Home
Class 12
MATHS
If cos^(-1)x+cos^(-1)y+cos^(-1)z=pi, th...

If `cos^(-1)x+cos^(-1)y+cos^(-1)z=pi`, then

A

`x^(2) + y^(2) + z^(2) + 2xyz = 1`

B

`2(sin^(-1) x + sin^(-1)y + sin^(-1)z) = cos^(-1) x + cos^(-1) y + cos^(-1) z `

C

` xy + yz + zx = x + y + z - 1`

D

`( x + 1/x) + ( y + 1/y) + ( z+ 1/z) ge 6`

Text Solution

Verified by Experts

The correct Answer is:
A, B
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove the followings : If cos^(-1)a+cos^(-1)b+cos^(-1)c=pi then a^(2)+b^(2)+c^(2)+2abc=1 .

If cot^(-1)x-cot^(-1)y=0andcos^(-1)x+cos^(-1)y=pi/2 then x + y = _______

If cos^(- 1)x-cos^(- 1)(y/2)=alpha then 4x^2-4xycosalpha+y^2=

If cos^(-1)xgtsin^(-1)x , then ____

If cos^(-1)lambda+cos^(-1)mu+cos^(-1)gamma=3pi, then find the value of λμ+μγ+γλ

Number of solutions (s) of the equations cos^(-1) ( 1-x) - 2 cos^(-1) x = pi/2 is

If 4sin^(-1)x+cos^(-1)x=pi , then x = _____

sin^(-1)(cos(sin^(-1)x))+cos^(-1)(sin(cos^(-1)x)) = _______

Find the values of each of the following : sin(cos^(-1)sqrt3x+cos^(-1)x)=1 then find x.