Home
Class 12
MATHS
2 tan ( tan^(-1)(x)+ tan^(-1)(x^(3))) " ...

`2 tan ( tan^(-1)(x)+ tan^(-1)(x^(3))) " where " x in R - {-1,1}` is equal to

A

`(2x)/(1 -x^(2))`

B

`tan(2 tan^(-1)x)`

C

`tan ( cot^(-1)(-x) - cot^(-1)(x))`

D

`tan(2 cot^(-1)x)`

Text Solution

Verified by Experts

The correct Answer is:
A, B, C
Promotional Banner

Similar Questions

Explore conceptually related problems

Sovle tan^(-1)2x+tan^(-1)3x=(pi)/4

Prove that: tan^(-1)x+tan^(-1)(1/x)=pi/2

tan^(-1)(x/y)-"tan"^(-1)(x-y)/(x+y) is equal to

(d)/(dx) tan^(-1) (sec x - tan x) - Find

(d)/(dx ) ( e^( tan^(-1) x+ cot^(-1) x)) =……. : (x in R)

Show that ( tan^(-1) 1 + tan^(-1) 2 + tan^(-1) 3) = pi

Derivative of tan^(-1)x w.r. to cot^(-1)x is ……. Where x in R

tan^(-1)(1)+tan^(-1)(2)+tan^(-1)(3) = _______

If tan^(-1)x+tan^(-1)y=(4pi)/5 , then cot^(-1)x+cot^(-1)y equals to ____