Home
Class 12
MATHS
Prove that: tan^(-1){(cos2alphasec2beta+...

Prove that: `tan^(-1){(cos2alphasec2beta+cos2betasec2alpha)/2}=tan^(-1){tan^2(alpha+beta)tan^2(alpha-beta)}+tan^(-1)1`

Text Solution

Verified by Experts

The correct Answer is:
2
Promotional Banner

Similar Questions

Explore conceptually related problems

If 3 sin alpha=5 sin beta , then (tan((alpha+beta)/2))/(tan ((alpha-beta)/2))=

Prove that: tan^(-1)x+tan^(-1)(1/x)=pi/2

if tanbeta=(nsinalphacosbeta)/(1-nsin^2alpha) then prove that tan(alpha-beta)=(1-n)tanalpha.

The value of the determinant |{:(1,sin(alpha-beta)theta,cos (alpha-beta)theta),(a, sinalphatheta,cos alphatheta),(a^(2),sin(alpha-beta)theta,cos(alpha-beta)theta):}| is independent of

Prove that 2tanbeta+cotbeta=tanalphaimplies2tan(alpha-beta)=cotbeta .

If cot^(-1)(sqrt(cosalpha))-tan^(-1)(sqrt(cosalpha))=x , then sinx is (a) tan^2(alpha/2) (b) cot^2(alpha/2) (c) tan^2alpha (d) cotalpha/2

If cosalpha+cosbeta=0=sinalpha+sinbeta, then prove that cos2alpha+cos2beta=-2cos(alpha+beta) .

Prove that |((beta+gamma-alpha-delta)^4,(beta+gamma-alpha-delta)^2,1),((gamma+alpha-beta-delta)^4,(gamma+alpha-beta-delta)^2,1),((alpha+beta-gamma-delta)^4,(alpha+beta-gamma-delta)^2,1)|=-64(alpha-beta)(alpha-gamma)(alpha-delta)(beta-gamma)(beta-delta)(gamma-delta)

Prove that tan^(-1) 2 + tan^(-1) 3 = (3pi)/4

If costheta=(cosalphacosbeta)/(1-sinalphasinbeta) then prove that tan((theta)/(2))=(tan((alpha)/(2))-tan((beta)/(2)))/(1-tan((alpha)/(2))tan((beta)/(2)))