Home
Class 12
MATHS
Let a, b and c be positive real numbers....

Let a, b and c be positive real numbers. Then prove that `tan^(-1) sqrt((a(a + b + c))/(bc)) + tan^(-1) sqrt((b (a + b + c))/(ca)) + tan^(-1) sqrt((c(a + b+ c))/(ab)) = pi`

Promotional Banner

Similar Questions

Explore conceptually related problems

a,b,c are positive numbers. Prove that, a^(2) + b^(2) + c^(2) gt ab + bc + ca

If a,b,c,d are positive real numbers such that (a)/(3) = (a+b)/(4)= (a+b+c)/(5) = (a+b+c+d)/(6) , then (a)/(b+2c+3d) is:-

If a,b,c and d are four positive real numbers such that abcd=1 , what is the minimum value of (1+a)(1+b)(1+c)(1+d) .

The value of sec[tan^(-1)((b+a)/(b-a))-tan^(-1)(a/b)] is ____

Let a ,ba n dc be real numbers such that a+2b+c=4 . Find the maximum value of (a b+b c+c a)dot

Prove that : cot^(-1)((1+ab)/(a-b))+cot^(-1)((1+bc)/(b-c))+cot^(-1)((1+ca)/(c-a))=pi,(a>b>c>0)

Prove that, tan((A)/(2)+B)=(c+b)/(c-b)tan((A)/(2))

If a^(2) + 2bc, b^(2) + 2ac, c^(2) + 2ab are in A.P then prove that (1)/(b-c), (1)/(c-a) and (1)/(a-b) are in A.P.

If a,b,c are real numbers such that 3(a^(2)+b^(2)+c^(2)+1)=2(a+b+c+ab+bc+ca) , than a,b,c are in

If a,b and c are complex numbers and z satisfies az^(2)+bz+c=0 , prove that abs(a)abs(b)=sqrt(a(bar(b))^(2)c) and abs(a)=abs(c) Leftrightarrow abs(z)=1 .