Home
Class 12
MATHS
If a(n) = sum(r=0)^(n) (1)/(""^(n)C(r))...

If ` a_(n) = sum_(r=0)^(n) (1)/(""^(n)C_(r)) ` , find the
value of ` sum_(r=0)^(n) (r)/(""^(n)C_(r))`

Text Solution

Verified by Experts

Let `P sum_(r=0)^(n) (r)/(""^(n)C_(r))` …(i)
Replacing by (n-r) in Eq . (i) , we get
`P= sum_(r=0)^(n) (n-r)/(""^(n)C_(n-r)) = sum_(r=0)^(n) ((n-r))/(""^(n)C_(r))" " [because ""^(n)C_(r) =""^(n)C_(n-r) ]...(ii)`
On adding Eqs. (i) and (ii) , we get
`P= sum_(r=0)^(n) (n-r)/(""^(n)C_(n-r)) = sum_(r=0)^(n) (1)/(""^(n)C_(r)=) = na_(n)" " ` [ given]
` therefore P = (n)/(2) a_(n)`
Hence , ` sum_(r=0)^(n) (r)/(""^(n)C_(r)) = (n)/(2) a_(n)`
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate sum_(r=1)^(n)rxxr!

If sum_(i=1)^(2n)cos^(-1)x_i=0 then find the value of sum_(i=1)^(2n)x_i

sum_(r=0)^(n).^(n)C_(r)4^(r)=..........

If sum_(r=1)^(n)T_(r)=(n)/(8)(n+1)(n+2)(n+3)," find "sum_(r=1)^(n)(1)/(T_(r)) .

Sum of the series sum_(r=1)^(n) (r^(2)+1)r! is

((n),(r)) = (""^(n)P_(r))/(K), then K = ......

If .^n P_r=^n P_(r+1) and .^n C_r=^n C_(r-1,) then the value of n+r is.

if .^(2n)C_(2):^(n)C_(2)=9:2 and .^(n)C_(r)=10 , then r is equal to

The sequence a_(1),a_(2),a_(3),".......," is a geometric sequence with common ratio r. The sequence b_(1),b_(2),b_(3),".......," is also a geometric sequence. If b_(1)=1,b_(2)=root4(7)-root4(28)+1,a_(1)=root4(28)" and "sum_(n=1)^(oo)(1)/(a_(n))=sum_(n=1)^(oo)(1)/(b_(n)) , then the value of (1+r^(2)+r^(4)) is

f(n)=sum_(r=1)^(n) [r^(2)(""^(n)C_(r)-""^(n)C_(r-1))+(2r+1)(""^(n)C_(r ))] , then