Home
Class 12
MATHS
If (1 + x+ 2x^(2))^(20) = a(0) + a(1) x ...

If `(1 + x+ 2x^(2))^(20) = a_(0) + a_(1) x + a_(2) x^(2) + …+ a_(40) x^(40)` .
The value of ` a_(0) + a_(2) + a_(4) + …+ a_(38)` is

Text Solution

Verified by Experts

` ( 1 + x - 2x^(2))^(20) = sum_(r=0)^(40) a_(r) x^(r) ` …(i)
Putting x = 1 , we get ` 0= sum_(r=0)^(a0) a^(r)`
or `a_(0)+a_(1)+a_(2)+a_(3)+ a_(4)+ a_(5)+...+ a_(39) +a_(40) = 0 ` ...(ii)
Putting x = - 1 in Eq . (i) , we get
`(-2)^(20) = sum_(r=0)^(40) (-1)^(r) a^(r)`
`a_(0)-a_(1)-a_(2)-a_(3)- a_(4)- a_(5)+...- a_(39) +a_(40) = 2^(20) ` ...(iii)
On subtracting . Eq (iii) from Eq. (ii) , we get
`2[a_(1) + a_(3) + a_(5) + ...+ a_(39) ] = 2^(20)`
or ` a_(1) + a_(3) + a_(5) + a_(39) = 0 2^(19)`
Corollary On adding Eqs. (ii) and (iii) and then dividing by
2 we get ` a_(0) + a_(2) + a_(4) + ... + a_(40) + 2^(19)` .
Promotional Banner

Similar Questions

Explore conceptually related problems

(1+x-2x^(2))^(6)=1+a_(1),x+a_(2)x^(2)+….+a_(12)^(12) then the value of a_(2) +a_(4)+a_(6)+….+a_(12)=………

What does a_(1) + a_(2) + a_(3) + …..+ a_(n) represent

if (1+ax+bx^(2))^(4)=a_(0) +a_(1)x+a_(2)x^(2)+…..+a_(8)x^(8), where a,b,a_(0) ,a_(1)…….,a_(8) in R such that a_(0)+a_(1) +a_(2) ne 0 and |{:(a_(0),,a_(1),,a_(2)),(a_(1),,a_(2),,a_(0)),(a_(2),,a_(0),,a_(1)):}|=0 then the value of 5.(a)/(b) " is " "____"

(1+x)^(10)=a_(0)+a_(1)x+a_(2)x^(2)+……..+a_(10)x^(10) then the value of (a_(0)-a_(2)+a_(4)-a_(6)+a_(8)-a_(10))^(2)+(a_(1)-a_(3)+a_(5)-a_(7)+a_(9))^(2) is ……

p(x)=a_(0)+a_(1)x^(2)+a_(2)x^(4)+…………+a_(n)x^(2n) is a polynomial with real variable x. If 0 lt a_(0)lt a_(1)lt a_(2)lt ……….lt a_(n) then p(x) has …………

Show that two lines a_(1) x + b_(14) y + c_(1) = 0 and a_(2) x + b_(2) y + c_(2) = 0 , where b_(1) , b_(2) ne 0 are Perpendicular if a_(1) a_(2) + b_(1) b_(2) =0 .

Find the respective terms for the following Aps: (i) a_(1) =2, a_(3) = 26 find a_(2) (ii) a_(2) =13, a_(4) = 3 find a_(1), a_(3) (iii) a_(1) =5, a_(4) = -22 find a_(1),a_(3),a_(4),a_(5)

If a_(i) gt 0 AA I in N such that prod_(i=1)^(n) a_(i) = 1 , then prove that (a + a_(1)) (1 + a_(2)) (1 + a_(3)) .... (1 + a_(n)) ge 2^(n)