Home
Class 12
MATHS
If (1+x)^n=c0+c1x+c2x^2+...+cnx^n then t...

If `(1+x)^n=c_0+c_1x+c_2x^2+...+c_nx^n` then the value of `c_0+3c_1+5c_2+....+(2n+1)c_n` is-

Text Solution

Verified by Experts

Here , last term of ` C_(0) + 3C_(1) + 5C_(2) + …+ (2n+1) C_(n)` is
`(2n+1) C_(n) "i.e., " (2n +1)` and last term with positive sign
Then , ` 2n + 1 = n* 2 +1`
or `{:("n)n+1(1"),(" "underline(-n)),(" "underline(1)):}`
Here , q = 2 and r = 1
The given series is
` (1 + x)^(n) = C_(0) + C_(1)x + C_(2) x^(2) + ...+ C_(n) x^(n)`
Now , replacing x by `x^(2)` , we get
` (1 + x^(2))^(n) = C_(0) + C_(1) x^(2) + C_(2) + C_(2)x^(4)+ ...+ C_(n)x^(2n)`
On multiplying bith sides by ` x^(1)` , we get
`x(1+x^(2))^(n) = C_(0) x + C_(1) x^(3) + C_(2)x^(5) + ...+ C_(n) x^(2n +1)`
On differentiating both sides w.r.t..x, we get
` x* n(1 + x^(2))^(n-1)*2x+ (1 + x^(2))^(n)*1 = C_(0) + 3C_(1) x^(2) + 5C_(2) x^(4) + ... + (2n +1) C_(n) x^(2n)`
Putting x = 1 , we get
`n*2^(n-1)* 2 + 2^(n) = C_(0) + 3C_(1) + 5C_(2) + ...+ (2n +1)C_(n)`
or ` C_(0) + 3C_(1) + 5C_(2) + ..+ (2n+1)C_(n) = (n+1) 2^(n)`
I .Aliter
LHS ` = C_(0) + 3C_(1) + 5C_(2) + ...+ (2n+1)C_(n)`
` = C_(0) + (1+2) C_(1) + (1 + 2) C_(2) + ..+ (1 + n)C_(n)` [use example]
` = 2^(n) + n.2^(n-1) = (n +2) 2^(n-1) ` RHS
II . Aliter
LHS `= C_(0) + 2C_(1) + 3C_(2) + ...+ (n+1) C_(n)`
`sum_(r=1)^(n+1) r. ""^(n)C_(r-1) = sum_(r=1)^(n+1) (r - 1 + 1) . ""^(n)C_(r-1)`
` = sum_(r=1)^(n+1) (r-1) . ""^(n)C_(r-1)+ ""^(n)C_(r-1)`
` [ because ""^(n)C_(r-1) = (n)/(r-1) . ""^(n-1)C_(r-2)]`
` = n(0 + ""^(n-1)C_(0) + ""^(n-1)C_(1) + ""^(n-1)C_(2) + ...+ ""^(n-1)C_(n-1))`
` +""^(n)C_(0) + ""^(n)C_(1) + ""^(n)C_(2) + ...+ ""^(n)C_(n))`
`= n.2^(n-1) + 2^(n) = (n+ 2). 2^(n-1) = RHS `
Promotional Banner

Similar Questions

Explore conceptually related problems

If .^n P_r=^n P_(r+1) and .^n C_r=^n C_(r-1,) then the value of n+r is.

If .^(20)C_(n+1)=.^(n)C_(16) , the value of n is

C_1 is a curve y^2=4x,C_2 is curve obtained by rotating C_1,120^@ in anti -clockwise direction C_3 is reflection of C_2 with respect to y=x and S_1,S_2,S_3 are foci of C_1,C_2 and C_3 , respectively, where O is origin. IF S_1(x_1,y_1),S_2(x_2,y_2) and S_3(x_3,y_3) then the value of sumx_1^2+sumy_1^2 is

If .^(2n)C_(3):^(n)C_(3)=11:1 , find the value of n.

If three lines whose equations are y=m_(1) x+c_(1), y=m_(2) x + c_(2) and y=m_(3) x + c_(3) are concurrent, then show that m_(1) (c_(2) - c_(3))+m_(2) (c_(3) - c_(1) ) + m_(3) ( c_(1) - c_(2) ) =0 .

If a variable tangent to the curve x^2y=c^3 makes intercepts a , bonx-a n dy-a x e s , respectively, then the value of a^2b is 27c^3 (b) 4/(27)c^3 (c) (27)/4c^3 (d) 4/9c^3

Let for a != a_1 != 0 , f(x)=ax^2+bx+c , g(x)=a_1x^2+b_1x+c_1 and p(x) = f(x) - g(x) . If p(x) = 0 only for x = -1 and p(-2) = 2 then the value of p(2) .

If |{:(a,,a^(2),,1+a^(3)),(b,,b^(2),,1+b^(3)),(c,,c^(2),,1+c^(3)):}|=0 and the vectors overset(to)((A)) =(1, a, a^(2)) , overset(to)((B)) = (1, b, b^(2)) , overset(to)((C))=(1,c,c^(2)) are non-coplanar then the value of abc = ….

Show that the area of the triangle formed by the lines y= m_(1) x + c_(1) , y= m_(2) x + c_(2) and x = 0 is ((c_1 - c_2)^2)/( 2| m_1 - m_2 | ) .

If Deltan=|{:(a^(2)+n,ab,ac),(ab,b^(2)+n,bc),(ac,bc,c^(2)+n):}|,n in N and the equation x^(3)-lambdax^(2)+11x-6=0 has roots a,b,c and a,b,c are in AP. The value of (Delta2_(n))/(Delta_(n)) is