Home
Class 12
MATHS
If (x+1/x+1)^(6)=a(0)(a(1)x+(b1)/x) +(a(...

If `(x+1/x+1)^(6)=a_(0)(a_(1)x+(b1)/x)`
`+(a_(2)x^(2)+b_(2)/x^(2))+...+(a_(6)x^(6)+b_(6)/x^(6)),`
the value of `a_(0)` is

A

121

B

131

C

141

D

151

Text Solution

Verified by Experts

The correct Answer is:
c

`because (x+1/x+1)^(6) = sum_(r=0)^(6) ""^(6)C_(r) (x+1/x)^(r)` for constant term r
must be even integer.
`therefore a_(0) = ""^(6)C_(0) + ""^(6) C_(2) xx^(2) C_(1) +""^(6)C_(4)xx^(4) C_(2) +""^(6) C_(6) xx""^(6)C_(3)`
`= 1 + 30 + 90 + 20 =141`
Promotional Banner

Similar Questions

Explore conceptually related problems

If |{:(a,a+x^(2),a+x^(2)+x^(4)),(2a,3a+2x^(2),4a+3x^(3)+2x^(4)),(3a,6a+3x^(2),10a+6x^(2)+3x^(4)):}| = a_(0)+a_(1)x+a_(2)x^(2)+a_(3)x^(3)+a_(4)x^(4)+a_(5)x^(5)+a_(6)x^(6)+a_(7)x^(7) and f(x) =+ a_(0)x^(2)+a_(3)x+a_(6) then

if (1+ax+bx^(2))^(4)=a_(0) +a_(1)x+a_(2)x^(2)+…..+a_(8)x^(8), where a,b,a_(0) ,a_(1)…….,a_(8) in R such that a_(0)+a_(1) +a_(2) ne 0 and |{:(a_(0),,a_(1),,a_(2)),(a_(1),,a_(2),,a_(0)),(a_(2),,a_(0),,a_(1)):}|=0 then the value of 5.(a)/(b) " is " "____"

Differentiate a_(0)x^(n)+a_(1)x^(n-1)+a_(2)x^(n-2)+...+a_(n-1)x+a_(n)

Statement -1 Consider the determinant Delta=|{:(a_(1)+b_(1)x^(2),a_(1)x^(2)+b_(1),c_(1)),(a_(2)+b_(2)x^(2),a_(2)x^(2)+b_(2),c_(2)),(a_(3)+b_(3)x^(2),a_(3)x^(2)+b_(3),c_(3)):}|=0, where a_(i),b_(i),c_(i) in R (i=1,2,3) and x in R Stement -2 If |{:(a_(1),b_(1),c_(1)),(a_(2),b_(2),c_(2)),(a_(3),b_(3),c_(3)):}| =0, then Delta =0

Statement-1 f(x) = |{:((1+x)^(11),(1+x)^(12),(1+x)^(13)),((1+x)^(21),(1+x)^(22),(1+x)^(23)),((1+x)^(31),(1+x)^(32),(1+x)^(33)):}| the cofferent of x in f(x)=0 Statement -2 If P(x)= a_(0)+a_(1)x+a_(2)x^(2)+a_(2)x_(3) +cdots+a_(n)s^(n) then a_(1)=P'(0) , where dash denotes the differential coefficient.

If a_(1),a_(2),a_(3)"....." are in GP with first term a and common rario r, then (a_(1)a_(2))/(a_(1)^(2)-a_(2)^(2))+(a_(2)a_(3))/(a_(2)^(2)-a_(3)^(2))+(a_(3)a_(4))/(a_(3)^(2)-a_(4)^(2))+"....."+(a_(n-1)a_(n))/(a_(n-1)^(2)-a_(n)^(2)) is equal to

(1+x-2x^(2))^(6)=1+a_(1),x+a_(2)x^(2)+….+a_(12)^(12) then the value of a_(2) +a_(4)+a_(6)+….+a_(12)=………

(1+x)^(10)=a_(0)+a_(1)x+a_(2)x^(2)+……..+a_(10)x^(10) then the value of (a_(0)-a_(2)+a_(4)-a_(6)+a_(8)-a_(10))^(2)+(a_(1)-a_(3)+a_(5)-a_(7)+a_(9))^(2) is ……

If Delta=|{:(a_(11),a_(12),a_(13)),(a_(21),a_(22),a_(23)),(a_(31),a_(32),a_(33)):}| and C_(ij)=(-1)^(i+j) M_(ij), "where " M_(ij) is a determinant obtained by deleting ith row and jth column then then |{:(C_(11),C_(12),C_(13)),(C_(21),C_(22),C_(23)),(C_(31),C_(32),C_(33)):}|=Delta^(2). If |{:(1,x,x^(2)),(x,x^(2),1),(x^(2),1,x):}| =5 and Delta =|{:(x^(3)-1,0,x-x^(4)),(0,x-x^(4),x^(3)-1),(x-x^(4),x^(3)-1,0):}| then sum of digits of Delta^(2) is