Home
Class 12
MATHS
If C(0) , C(1), C(2), …, C(n) are the b...

If ` C_(0) , C_(1), C_(2), …, C_(n)` are the binomial coefficients
in the expansion of ` (1 + x)^(n)` , prove that
`(C_(0) + 2C_(1) + C_(2) )(C_(1) + 2C_(2) + C_(3))…(C_(n-1) + 2C_(n) + C_(n+1))`=
`((n+2)^(n))/((n+1)!) prod _(r=1)^(n) (C_(r-1) + C_(r))`.

Text Solution

Verified by Experts

`LHS = (C_(0) + 2C_(1) + C_(2) )(C_(1) + 2C_(2) + C_(3))…(C_(n-1) + 2C_(n) + C_(n+1))`
` prod _(r=1)^(n) (C_(r-1) +2 ""^(n)C_(r) + C_(r+1))`
` prod _(r=1)^(n) {(""^(n)C_(r-1) +""^(n)C_(r))+ (""^(n)C_(r)+ ""^(n)C_(r-1))}`
` prod _(r=1)^(n) (""^(n+1)C_(r-1) + ""^(n+1)C_(r+1))" "` [by Pascal's rule]
` prod _(r=1)^(n) (""^(n+2)C_(r-1) )= prod_(r=1)^(n) ((n+2)/(r+1)) ""^(n+1)C_(r)[because ""^(n)C_(r)= n/r*""^(n-1)C_(r-1)]`
` prod _(r=1)^(n) ((n+2)/(r+1))(""^(n+2)C_(r-1) )= prod_(r=1)^(n) ((n+2)/(r+1))prod_(r=1)^(n) (C_(r-1)+ C_(r))`
` = ((n+2))/(2) *((n+2))/(3) *((n+2))/(4) ...((n+2))/((n+1)) prod_(r=1)^(n) (C_(r-1) + C_(r))`
`((n+2)^(n))/((n+1)!) prod_(r=1)^(n) (C_(r-1) + C_(r))= RHS `
Promotional Banner

Similar Questions

Explore conceptually related problems

The sum of coefficients of the two middle terms in the expansion of (1+x)^(2n-1) is equal to (2n-1)C_(n)

Prove that .^(n-1)C_(3)+.^(n-1)C_(4) gt .^(n)C_(3) if n gt 7 .

Prove that the coefficient of x^n in the expansion of (1+x)^(2n) is twice the coefficient of x^n in the expansion of (1+x)^(2n-1) .

The potential at point D is = ....... as shown In below figure. (a) (1)/(2) (V_(1)+V_(2)) (b) (C_(1)V_(2)+C_(2)V_(1))/(C_(1)+C_(2)) (c) (C_(1)V_(1)+C_(2)V_(2))/(C_(1)+C_(2)) (d) (C_(2)V_(1)-C_(1)V_(2))/(C_(1)+C_(2))

If .^(20)C_(n+1)=.^(n)C_(16) , the value of n is

If .^(n)C_(9)=.^(n)C_(7) , find n.

If the coefficients of a^r-1 , a^r and a^r+1 in the expansion of (1+a)^n are in arithmetic progression, prove that n^2 - n(4r+1)+ 4r^2 - 2 =0.

sum_(r=0)^(n).^(n)C_(r)4^(r)=..........

Show that (b-c)/(r _(1))+ (c-a)/(r _(2))+(a-b)/(r _(3)) =0.

If ""^(n)C_(9)=""^(n)C_(8) , find ""^(n)C_(17) .