Home
Class 12
MATHS
If (1 + x)^(n) = sum(r=0)^(n) C(r)x^(r)...

If ` (1 + x)^(n) = sum_(r=0)^(n) C_(r)x^(r)`, then prove that
`(sumsum)_(0leiltjlen) ((i)/(C_(i)) + (j)/(C_(j))) = (n^(2))/(2) sum_(r=0)^(n) (1)/(C_(r))` .

Text Solution

Verified by Experts

Let `S=underset(0leiltjlen)(sumsum) ((i)/(C_(i)) + (j)/(C_(j)))`…(i)
Replacing I by n-I and j by n-j , we get
`S=underset(0leiltjlen)(sumsum) ((n-i)/(C_(n-i))+ (n-j)/(C_(n-j)))=underset(0leiltjlen)(sumsum) ((n-i)/(C_(i)) + (n-j)/(C_(j))) " " [because C_(r) = C_(n-r)]` ...(ii)
On adding Eqs .(i) and (ii) , we get
`2S=n underset(0leiltjlen)(sumsum) ((1)/(C_(i)) + (1)/C_(j))`
`therefore S=n/2 underset(0leiltjlen)(sumsum) ((1)/(C_(i)) + (1)/C_(j))=n/2 (sum_(r=0)^(n-1) (n-r)/(C_(r) ) + sum_(r=1)^(n) (r)/(C_(r)))`
`=n/2 (sum_(r=0)^(n-1) (n-r)/(C_(r) ) + sum_(r=1)^(n) (r)/(C_(r)))=n/2(sum_(r=0)^(n) (n)/(C_(r))) = (n^(2))/(2) sum_(r=0)^(n) (1)/(C_(r))` .
Promotional Banner

Similar Questions

Explore conceptually related problems

sum_(r=0)^(n).^(n)C_(r)4^(r)=..........

If sum_(r=1)^(n)T_(r)=(n)/(8)(n+1)(n+2)(n+3)," find "sum_(r=1)^(n)(1)/(T_(r)) .

If ((n),(r)) = ((n),(r+2)), then r = …… ,

Prove that sum_(r=0)^n 3^r n Cundersetr = 4^n .

If sum_(i=1)^(2n)cos^(-1)x_i=0 then find the value of sum_(i=1)^(2n)x_i

Show that (b-c)/(r _(1))+ (c-a)/(r _(2))+(a-b)/(r _(3)) =0.

sum_(r=1)^n(2r+1)=...... .

Evaluate ^(47)C_(4)+sum_(j=0)^(3)""^(50-j)C_(3)+sum_(k=0)^(5) ""^(56-k)C_(53-k) .

If sum_(r=1)^(n)T_(r)=(n(n+1)(n+2)(n+3))/(12) where T_(r) denotes the rth term of the series. Find lim_(nto oo) sum_(r=1)^(n)(1)/(T_(r)) .

If .^n P_r=^n P_(r+1) and .^n C_r=^n C_(r-1,) then the value of n+r is.