Home
Class 12
MATHS
Prove that sum(k=0)^(9) x^(k)"divides"...

Prove that ` sum_(k=0)^(9) x^(k)"divides" sum_(k=0)^(9) x^(kkkk)`

Text Solution

Verified by Experts

Let `S_(1) = sum_(k=0)^(9) x^(kkkk)= x^(0) + x^(1111) + x^(2222) + ...+ x^(9999)`
and ` S_(2) = sum_(k=0)^(9) x^(k)= x^(0) + x^(1) + x^(2) + ...+ x^(9)`
Now , ` S_(1) - S_(2) = sum_(k=0)^(9) (x^(kkkk) - x^(k)) = sum_(k=0)^(9) x^(k) (x^(10))^(kkkk) -1`
`= [(x^(10))^(kkk) -1] sum_(k=0)^(9) x^(k) = lambda sum_(k=0) ^(9) x^(k)`
` rArr S_(1) -S_(2) = lambda S_(2) rArr S_(1) (1+ lambda) S_(2)` .
Hence , ` sum_(k=0)^(9) x^(kkkk)` is divisible by ` sum_(k=0)^(9) x^(k)`.
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate sum_(k-1)^11(2+3^k)

Find the value of sum_(i=0)^(oo)sum_(j=0)^(oo)sum_(k=0)^(oo)(1)/(3^(i)3^(j)3^(k)) .

Evaluate ^(47)C_(4)+sum_(j=0)^(3)""^(50-j)C_(3)+sum_(k=0)^(5) ""^(56-k)C_(53-k) .

Let k=1^@ , then prove that sum_(n=0)^88 1/(cosnk* cos(n+1)k)=cosk/sin^2k

Definite integration as the limit of a sum : lim_(ntooo)sum_(k=0)^(n)(n)/(n^(2)+k^(2))=..........

Statement 1 The sum of the series 1+(1+2+4)+(4+6+9)+(9+12+16)+"……."+(361+380+400) is 8000. Statement 2 sum_(k=1)^(n)(k^(3)-(k-1)^(3))=n^(3) for any natural number n.

Let x_(1),x_(2),x_(3), . . .,x_(k) be the divisors of positive integer 'n' (including 1 and x). If x_(1)+x_(2)+ . . .+x_(k)=75 , then sum_(r=1)^(k)(1)/(x_(i)) is equal to

Let S_k ,k=1,2, ,100 , denotes thesum of the infinite geometric series whose first term s (k-1)/(k !) and the common ratio is 1/k , then the value of (100^2)/(100 !)+sum_(k=2)^(100)(k^2-3k+1)S_k is _______.

If sum_(i=1)^(2n)cos^(-1)x_i=0 then find the value of sum_(i=1)^(2n)x_i

Definite integration as the limit of a sum : lim_(ntooo)sum_(K=1)^(n)(K)/(n^(2)+K^(2))=......