Home
Class 12
MATHS
The value of the expression (sum(r=0)^1...

The value of the expression `(sum_(r=0)^10 "^10 C_r)(sum_(k=0)^10 (-1)^k (^10 C_k)/2^k)` is :

A

1

B

`2^(5)`

C

`2^(10)`

D

`2^(20)`

Text Solution

Verified by Experts

The correct Answer is:
a
Promotional Banner

Similar Questions

Explore conceptually related problems

The sum of the series sum_(r=0)^(10) .^(20)C_(r) , is 2^(19)+{(.^(20)C_(10))/2} .

Find the value of sum_(i=0)^(oo)sum_(j=0)^(oo)sum_(k=0)^(oo)(1)/(3^(i)3^(j)3^(k)) .

Evaluate ^(47)C_(4)+sum_(j=0)^(3)""^(50-j)C_(3)+sum_(k=0)^(5) ""^(56-k)C_(53-k) .

The value of lim_(n->oo) sum_(k=1)^n log(1+k/n)^(1/n) ,is

The value of sum_(r=2)^n (-2)^r|(n-2C_(r-2),n-2C_(r-1),n-2C_r),(-3,1,1),(2,-1,0)|(n > 2)

The value of lim_(n->oo)sum_(k=1)^n(6^k)/((3^k-2^k)(3^(k+1)-2^(k+1)) is equal to

Let S_k ,k=1,2, ,100 , denotes thesum of the infinite geometric series whose first term s (k-1)/(k !) and the common ratio is 1/k , then the value of (100^2)/(100 !)+sum_(k=2)^(100)(k^2-3k+1)S_k is _______.

Evaluate sum_(k-1)^11(2+3^k)

sum_(r=0)^(n).^(n)C_(r)4^(r)=..........

sum_(r=0)^(1theta)((10),(r)).2^(10-r)(-5)^(r)=.........