Home
Class 12
MATHS
Find the sum of the series sum(r=1)^(...

Find the sum of the series
`sum_(r=1)^(n) (-1)^(r)""^(n)C_(r) {(1)/(2^(r)) + (3^(r))/(2^(2r)) + (7^(r))/(2^(3r)) + (15^(r))/(2^(4r)) + ..."upto m terms"}` .

A

-6

B

-3

C

3

D

Cannot be determined

Text Solution

Verified by Experts

The correct Answer is:
d

`because sum_(r=0)^(n) (-1)^(r) ""^(n)C_(r)[((1)/(2))^(r) + ((3)/(4))^(r) + ((7)/(8))^(r) +..."upto m terms"]`
` = (1 - (1)/(2))^(n) + (1 - (3)/(4))^(n) + (1 - (7)/(8))^(n) +... "upto m terms" ]`
` (1)/(2^(n)) + (1)/(2^(2n)) + (1)/(2^(3n)) + ..." upto m terms" `
` = ((1)/(2^(n))[1-((1)/(2^(n)))^(m)])/((1- (1)/(2^(n))) )= ((1)/(2^(n)-1))(1-(1)/(2^(mn)))`
` therefore f (n) = (1)/(2^(n) -1)`
` therefore int_(-3)^(3) f(x^(3) " In x) * dt " (x^(3) ` in x)
`=int _(-3) ^(3) (1)/((2^(x^(3)"In x")-1))*(3x^(2) " In " x + x^(2))dx`
Since , In x cannot be defined for ` x lt 0 `
` therefore ` Above integral cannot be calculated .
Promotional Banner

Similar Questions

Explore conceptually related problems

Sum of the series sum_(r=1)^(n) (r^(2)+1)r! is

Find the sum of the series Sigma_(r=1)^(n) r x^(r-1) using calculus .

The sum of the series sum_(r=0)^(10) .^(20)C_(r) , is 2^(19)+{(.^(20)C_(10))/2} .

sum_(r=0)^(n).^(n)C_(r)4^(r)=..........

f(n)=sum_(r=1)^(n) [r^(2)(""^(n)C_(r)-""^(n)C_(r-1))+(2r+1)(""^(n)C_(r ))] , then

Evaluate sum_(r=1)^(n)rxxr!

sum_(r=1)^n(2r+1)=...... .

If sum_(r=1)^(n)T_(r)=(n)/(8)(n+1)(n+2)(n+3)," find "sum_(r=1)^(n)(1)/(T_(r)) .

sum_(r=0)^(1theta)((10),(r)).2^(10-r)(-5)^(r)=.........

If y=sum_(r=1)^(x) tan^(-1)((1)/(1+r+r^(2))) , then (dy)/(dx) is equal to