Home
Class 12
MATHS
The largest real value of x, such that ...

The largest real value of x, such that
`sum_(r=0)^(4) ((5^(4-r))/((4-r)!))((x^(r))/(r!)) = (8)/(3)` is

A

` 2 sqrt(2) - 5`

B

`2sqrt(2) + 5`

C

`- 2sqrt(3) -5`

D

`- 2sqrt(2) + 5 `

Text Solution

Verified by Experts

The correct Answer is:
a

Given , ` sum_(r=0)^(4) (5^(4-r))/((4-r)!) ((x^(r))/(r!)) = (8)/(3)`
` rArr ((5+x)^(4))/(4!) = (8)/(3)`
` rArr (5+ x)^(4) = 64 = (2sqrt(2))^(4) rArr 5 + x = pm 2 sqrt(2)`
` therefore x = 2sqrt(2) - 5 or x = - 2sqrt(2) - 5`
Hence , largest real value of x is ` 2 sqrt(2) - 5` .
Promotional Banner

Similar Questions

Explore conceptually related problems

If y=sum_(r=1)^(x) tan^(-1)((1)/(1+r+r^(2))) , then (dy)/(dx) is equal to

Sum of the series sum_(r=1)^(n) (r^(2)+1)r! is

sum_(r=0)^(1theta)((10),(r)).2^(10-r)(-5)^(r)=.........

sum_(r=0)^(n).^(n)C_(r)4^(r)=..........

Find the value of r, if (i) .^(11)P_(r)=990 (ii) .^(8)P_(5)+5*.^(8)P_(4)=.^(9)P_(r)

Let f : (0, oo) rarr R be a continuous function such that f(x) = int_(0)^(x) t f(t) dt . If f(x^(2)) = x^(4) + x^(5) , then sum_(r = 1)^(12) f(r^(2)) , is equal to

A uniformly charged solid shpere fo radius R has potential V_(0) (measured with respect to oo ) on its surface. For this sphere the equipotentail surfaces with potentials (3V_(0))/(2) , (5 V_(0))/(4), (3V_(0))/(4) and (V_(0))/(4) have radius R_(1), R_(2), R_(3) and R_(4) respecatively. Then

sum_(r=1)^n(2r+1)=...... .

Prove that sum_(r=0)^n 3^r n Cundersetr = 4^n .

If f(x+y+z)=f(x)+f(y)+f(z) with f(1)=1 and f(2)=2 and x,y, z epsilonR the value of lim_(xtooo)sum_(r=1)^(n)((4r)f(3r))/(n^(3)) is ……….