Home
Class 12
MATHS
Number of values of r satisfying the equ...

Number of values of r satisfying the equation
` ""^(69)C_(3r-1)- ""^(69)C_(r^(2)) = ""^(69)C_(r^(2)-1) - ""^(69)C_(3r) ` is

A

1

B

2

C

3

D

7

Text Solution

Verified by Experts

The correct Answer is:
c,d

`""^(69)C_(3r) + ""^(69)C_(3r) = ""^(69)C_(r^(2)-1) + ""^(69)C_(r^(2))`
` rArr ""^(70)C_(3r) = ""^(70)C_(r^(2))`
` rArr r^(2) = 3r or 70 - 3r = r^(3)`
`rArr r = 0 , 3 or r^(3( + 3r - 70 = 0 `
` rArr r = 0 , 3 or (r + 10 ) (r - 7) = 0 `
` rArr r = 0, 3, 7, - 10 `
But r = 0 , - 10 do not satisfiles the given equation .
Hence , two values of r satisfies ,
i.e. r = 3,7
Promotional Banner

Similar Questions

Explore conceptually related problems

""^(n)C_(n-r)+3.""^(n)C_(n-r+1)+3.""^(n)C_(n-r+2)+""^(n)C_(n-r+3)=""^(x)C_(r)

If .^(15)C_(3r)=.^(15)C_(r+3), find .^(r)C_(2) .

f(n)=sum_(r=1)^(n) [r^(2)(""^(n)C_(r)-""^(n)C_(r-1))+(2r+1)(""^(n)C_(r ))] , then

if .^(2n)C_(2):^(n)C_(2)=9:2 and .^(n)C_(r)=10 , then r is equal to

The sum of the series sum_(r=0)^(10) .^(20)C_(r) , is 2^(19)+{(.^(20)C_(10))/2} .

Number of solutions of the equation cosectheta=k in [0,pi] where k=lim_(n->oo)pi_(r=2)^n((r^3-1)/(r^3+1)) is

Sum of the series sum_(r=1)^(n) (r^(2)+1)r! is

The differintial eauation of all circle of radius r, is given by (a) {1+(y_(1))^(2)}^(2)=r^(2)y_(2)^(3) (b) {1+(y_(1))^(2)}^(3)=r^(2)y_(2)^(3) ( c ) {1+(y_(1))^(2)}^(3)=r^(2)y_(2)^(2) (d) None of these

sum_(r=0)^(n).^(n)C_(r)4^(r)=..........

If r be the ratio ofthe roots of the equation ax^2 +bx + c = 0 , show that (r+1)^2/r =(b^2)/(ac)