Home
Class 12
MATHS
If ( 1 + x - 2x^(2))^(20) = sum(r=0)^(4...

If ` ( 1 + x - 2x^(2))^(20) = sum_(r=0)^(40) a_(r) x^(r) ` , then find
the value of ` a_(1) + a_(3) + a_(5) + …+ a_(39)` .

A

`2^(19) (2^(19) -1)`

B

`2^(20)(2^(19)-1)`

C

`2^(19) (2^(20)-1)`

D

`2^(20) (2^(20)-19)`

Text Solution

Verified by Experts

The correct Answer is:
c

Given , ` (1 + x + 2x^(2))^(20) = a_(0) + a_(1) x + a_(2)x^(2) + …+ a_(40) x^(40)`
On putting x = 1 and x = - 1 respectively , we get
` a_(0) + a_(1) + a_(2) + …+ a_(40) = 4^(20) = 2^(40)` …(i)
and ` a_(0) - a_(1) + a_(2) - …+ a_(40) = 2^(20)` ....(ii)
From Eqs. (i) and (ii) , we get
` a_(0) + a_(2) + a_(4) + ...+ a_(38) + a_(40) = 2^(19) (2^(20)+1) `....(iii)
and ` a_(1) + a_(3) + a_(5) + ...+ a_(37) + a_(39)= 2^(19) (2^(20) -1) `...(iv)
Also , resplacing x by ` (1)/(x) ` in given expanssion , we get
`(1 + (1)/(x) + (2)/(x^(2)))^(20) = a_(0) + (a_(1))/(x) + (a_(2))/(x^(2) )+ ...+ (a_(38))/(x^(38)) + (a_(39))/(x^(39)) + (a_(40))/(x^(40) )`
` rArr (2 + x + x^(2))^(20) = a_(0) x^(40) + a_(1) x^(39) `
` + ...+ a_(38) x^(2) + a_(39) x + a_(40) ` ...(v)
On putting x = 0 , we get ` a_(40) = a^(20) ` ....(vi)
On differentiating both sides of Eq. (v) w.r.t x and put x = 0 ltbr we get
` a_(39) = 20 (2)^(19) ` ....(vii)
Promotional Banner

Similar Questions

Explore conceptually related problems

(1+x-2x^(2))^(6)=1+a_(1),x+a_(2)x^(2)+….+a_(12)^(12) then the value of a_(2) +a_(4)+a_(6)+….+a_(12)=………

What does a_(1) + a_(2) + a_(3) + …..+ a_(n) represent

If a_(i) gt 0 AA I in N such that prod_(i=1)^(n) a_(i) = 1 , then prove that (a + a_(1)) (1 + a_(2)) (1 + a_(3)) .... (1 + a_(n)) ge 2^(n)

Find the relation between acceleration of blocks a_(1), a_(2) and a_(3) .

If a_(1),a_(2),a_(3),a_(4) and a_(5) are in AP with common difference ne 0, find the value of sum_(i=1)^(5)a_(i) " when " a_(3)=2 .

If a_(1),a_(2),a_(3),"........" is an arithmetic progression with common difference 1 and a_(1)+a_(2)+a_(3)+"..."+a_(98)=137 , then find the value of a_(2)+a_(4)+a_(6)+"..."+a_(98) .

p(x)=a_(0)+a_(1)x^(2)+a_(2)x^(4)+…………+a_(n)x^(2n) is a polynomial with real variable x. If 0 lt a_(0)lt a_(1)lt a_(2)lt ……….lt a_(n) then p(x) has …………

if (1+ax+bx^(2))^(4)=a_(0) +a_(1)x+a_(2)x^(2)+…..+a_(8)x^(8), where a,b,a_(0) ,a_(1)…….,a_(8) in R such that a_(0)+a_(1) +a_(2) ne 0 and |{:(a_(0),,a_(1),,a_(2)),(a_(1),,a_(2),,a_(0)),(a_(2),,a_(0),,a_(1)):}|=0 then the value of 5.(a)/(b) " is " "____"

Find the sum of first 24 terms of the A.P. a_(1) , a_(2), a_(3) ...., if it is know that a_(1) + a_(5) + a_(10) + a_(15) + a_(20) + a_(24) = 225