Home
Class 12
MATHS
Statement-1: sum(r =0)^(n) (r +1)""^(n)...

Statement-1: ` sum_(r =0)^(n) (r +1)""^(n)C_(r) = (n +2) 2^(n-1)`
Statement -2: ` sum_(r =0)^(n) (r+1) ""^(n)C_(r) x^(r) = (1 + x)^(n) + nx (1 + x)^(n-1)`

A

Statement-1 is true ,Statement-2 is true, Statement-2 is a correct explanation for Statement-1

B

Statement-1 is true ,Statement-2 is true, Statement-2 is not a correct explanation for Statement-1

C

Statement-1 is true ,Statement-2 is false

D

Statement-1 is true ,Statement-2 is true

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

sum_(r=0)^(n).^(n)C_(r)4^(r)=..........

Evaluate sum_(r=1)^(n)rxxr!

sum_(r=1)^n(2r+1)=...... .

If t_(1)=1,t_(r )-t_( r-1)=2^(r-1),r ge 2 , find sum_(r=1)^(n)t_(r ) .

f(n)=sum_(r=1)^(n) [r^(2)(""^(n)C_(r)-""^(n)C_(r-1))+(2r+1)(""^(n)C_(r ))] , then

Prove by mathematical induction that sum_(r=0)^(n)r^(n)C_(r)=n.2^(n-1), forall n in N .

Prove that sum_(r=0)^n 3^r n Cundersetr = 4^n .

If sum_(r=1)^(n)T_(r)=(n)/(8)(n+1)(n+2)(n+3)," find "sum_(r=1)^(n)(1)/(T_(r)) .

Sum of the series sum_(r=1)^(n) (r^(2)+1)r! is

if ((n),(r)) + ((n),(r-1)) = ((n + 1),(x)), then x = ....