Home
Class 12
MATHS
If the points, ((a^(3))/(a-1),(a^(2)-3)/...

If the points, `((a^(3))/(a-1),(a^(2)-3)/(a-1)), ((b^(3))/(b-1),(b^(2)-3)/(b-1))` and `((c^(3))/(c-1)(c^(2)-3)/(c-1))` are collinear for three distinct values a, b, c and `a ne 1, b ne 1` and `c ne 1`, then show that `abc-(bc+ca+ab)+3(a+b+c)=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

If the points (a^3/(a-1),(a^2-3)/(a-1)) , (b^3/(b-1),(b^2-3)/(b-1)) , (c^3/(c-1),(c^2-3)/(c-1)) are collinear for 3 distinct values a,b,c and a!=1, b!=1, c!=1 , then find the value of abc-(ab+bc+ca)+3(a+b+c) .

If in a triangle ABC, /_C=60^@ , then prove that 1/(a+c)+1/(b+c)=3/(a+b+c)

Verify : a^(3)+b^(3)+c^(3)-3abc=(1)/(2)(a+b+c)[(a-b)^(2)+(b-c)^(2)+(c-a)^(2)]

If |a|=1,|b|=3 and |c|=5 , then the value of [a-b" "b-c" "c-a] is

If the points A(-1, -4) , B(b,c) and C(5,-1) are collinear and 2b + c = 4 , find the values of b and c.

Prove the followings : "cot"^(-1)(ab+1)/(a-b)+"cot"^(-1)(bc+1)/(b-c)+"cos"^(-1)(ca+1)/(c-a)=pi(agtbgtc)

The points A(-2,1) , B ( 0,5) , C ( -1 , 2) are collinear.

Prove that : cot^(-1)((1+ab)/(a-b))+cot^(-1)((1+bc)/(b-c))+cot^(-1)((1+ca)/(c-a))=pi,(a>b>c>0)

If (a^(2)+b^(2))^(3) = (a^(3)+b^(3))^(2) and ab ne 0 then the numerical value of (a)/(b)+ (b)/(a) is equal to-