Home
Class 12
MATHS
Find the locus of the point of intersect...

Find the locus of the point of intersection of the lines `x cos alpha + y sin alpha = a` and `x sin alpha - y cos alpha = b`, where `alpha` is variable.

A

`2(x^(2)+y^(2))= a^(2) + b^(2)`

B

`x^(2) - y^(2) = a^(2 - b^(2)`

C

`x^(2)+y^(2)=a^(2)+b^(2)`

D

`x^(2) - y^(2) = a^(2) +b^(2)`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

Locus of the point of intersection of the lines xcosalpha+ysinalpha=a and xsinalpha-ycosalpha=b where alpha is variable.

If sin (3alpha) /cos(2alpha) < 0 If alpha lies in

If sin 3 alpha =4 sin alpha sin (x+alpha ) sin(x-alpha ) , then

The point of intersection of lines is (alpha, beta) , then the equation whose roots are alpha, beta , is

If the lines x cos alpha + y sin alpha = P and x - sqrt(3) y+ 1 =0 are mutually perpendicular then alpha=…....

if [ ( cos alpha, - sin alpha),(sin alpha, cos alpha)] and A +A^1 =I then alpha =……

Find P and alpha by converting equation x+y =1 in xcos alpha + y sin alpha = P form.

Find distance PQ between the points P ( a cos alpha, a sin alpha) and Q ( a cos beta, a sin beta) .