Home
Class 12
MATHS
If (d)/(dx) (sin x+c)=cos x, then find ...

If `(d)/(dx) (sin x+c)=cos x`, then find `int cos x dx`.

Text Solution

Verified by Experts

The correct Answer is:
`:.int cos x dx=(sinx)+C`
Promotional Banner

Similar Questions

Explore conceptually related problems

(d)/(dx) (sin^(3)x) = …….

If (d)/(dx)f(x)=cos x +sin x and f(0)=2 , then f(x)=.....

(d)/(dx) ( sqrt(x sin x)) = …… (0 lt x lt pi)

The integrating factor (I.F.) of the differential equation cos x "" ( dy)/( dx) = y sin x + e^(x) cos x is . . . .

(d)/(dx) (sin^(-1)x + cos^(-1) x)= …….. (|x| lt 1)

Integration using rigonometric identities : (d)/(dx)g(x)=g(x) and g(0)=1 then int g(x)((2-sin 2x)/(1-cos2x))dx....+c

Differentiate (sin x)^(cos x)

( d)/(dx) [ x^(3) ( cos ^(-1) x + sin ^(-1) x) ] = . . . . . , | x| lt 1

(d)/(dx) (e^(sin^(-1)x + cos^(-1) x))= ……. (|x| lt 1)