Home
Class 12
MATHS
The integral int(sec^2x)/((secx+tanx)^(9...

The integral `int(sec^2x)/((secx+tanx)^(9/2))dx` equals (for some arbitrary constant `K)dot` `-1/((secx+tanx)^((11)/2)){1/(11)-1/7(secx+tanx)^2}+K` `1/((secx+tanx)^(1/(11))){1/(11)-1/7(secx+tanx)^2}+K` `-1/((secx+tanx)^((11)/2)){1/(11)+1/7(secx+tanx)^2}+K` `1/((secx+tanx)^((11)/2)){1/(11)+1/7(secx+tanx)^2}+K`

A

`(-1)/((sec x + tan x)^(11//2)){(1)/(11)-1/7 (sec x + tan x)^(2)}+K`

B

`(1)/((sec x + tan x)^(11//2)){(1)/(11)-1/7 (sec x + tan x)^(2)}+K`

C

`(-1)/((sec x + tan x)^(11//2)){(1)/(11)+1/7 (sec x + tan x)^(2)}+K`

D

`(1)/((sec x + tan x)^(11//2)){(1)/(11)+1/7 (sec x + tan x)^(2)}+K`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

int (secx+ tan x)^(2)dx=...

Find the following integrals intsecx(secx+tanx)dx

Choose the correct answer inte^(x)secx(1+tanx)dx equals

Integrate the functions 1/(cos^(2)x(1-tanx)^(2))

Integrate the functions 1/(1-tanx)

int{1+2 tan x(tanx+sec x)}^((1)/(2))dx=....

If y=(secx-tanx)/(secx+tanx), then (dy)/(dx) equals.

f(x)=secx, g(x)=1/cosx Identical or not?

int(1-tanx)/(1+tanx)dx=.....