Home
Class 12
MATHS
Show that cot(pi/4+x)cot(pi/4-x)=1...

Show that `cot(pi/4+x)cot(pi/4-x)=1`

Text Solution

Verified by Experts

The correct Answer is:
1
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that cos((pi)/(4)-x)cos((pi)/(4)-y)-sin((pi)/(4)-x)sin((pi)/(4)-y)=sin(x+y)

Prove that cos((3pi)/(4)+x)-cos((3pi)/(4)-x)=-sqrt(2)sinx

Prove that, cos((pi)/(4)+x)+cos((pi)/(4)-x)=sqrt(2)cosx .

Prove that : cot(pi/4-2cot^(-1)3)=7

Prove that cos((3pi)/(2)+x)cos(2pi+x)[cot((3pi)/(2)-x)+cot(2pi+x)]=1

Prove that cos((3pi)/(2)+x)cos(2pi+x).{cot((3pi)/(2)-x)+cot(2pi+x)}=1

The value of cot((pi)/(4)+theta)cot((pi)/(4)-theta) is

Prove that (cos(pi+x)cos(-x))/(sin(pi-x)cos((pi)/(2)+x))=cot^(2)x

Prove that (tan((pi)/(4)+x))/(tan((pi)/(4)-x))=((1+tanx)/(1-tanx))^(2)

Prove that cot^2 pi/6 +cose c (5pi)/6 +3tan^2 pi/6=6