Home
Class 12
MATHS
If A+B+C=pi, prove that : cot (A/2)+ cot...

If `A+B+C=pi`, prove that : `cot (A/2)+ cot(B/2) + cot(C/2) = cot(A/2) cot (B/2) cot (C/2)`

Text Solution

Verified by Experts

The correct Answer is:
1
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : cot(pi/4-2cot^(-1)3)=7

In a triangle ABC, prove that (cot(A/2)+cot(B/2)+cot(C/2))/(cotA+cotB+cot(C))=((a+b+c)^2)/(a^2+b^2+c^2)

In any Delta ABC, prove the following : r_1=rcot(B/2)cot(C/2)

cot x cot 2x - cot 2x cot 3x - cot 3x cot x=1

If tan A= cot B, prove that A+ B = 90^(@)

Show that cot(pi/4+x)cot(pi/4-x)=1

Show that (1- tan ^(2) A ) /( cot ^(2) A-1) =tan ^(2) A

Prove that tan 70^(@)=cot70^(@)+2cot40^(@)

Prove that (sin A +cosec A) ^(2) +(cos A +sec A) ^(2) =7+ tan ^(2) A +cot ^(2) A