Home
Class 12
MATHS
For any the real theta the maximum value...

For any the real `theta` the maximum value of `cos^2(costheta)+sin^2(sintheta)` is

A

1

B

`1+sin^(2)1`

C

`1+cos^(2)1`

D

does not exist

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

Maximum and minimum value of 2sin^2theta-3sintheta+2 is

For theta in(0,pi/2) , the maximum value of sin(theta+pi/6)+cos(theta+pi/6) is attained at theta =

The value of sin(45^(@)+theta)-cos(45^(@)-theta) is

If costheta = 5/3 then what is the value of cos(theta/2) ?

The maximum value of |{:(1,1,1),(1,1+sintheta,1),(1,1,1+costheta):}| is 1/2

If tantheta=a/b , find the value of (costheta+sintheta)/(costheta-sintheta)

If sintheta=1/3 find the value of 2cot^(2)theta+2 .

The solution set of cos2theta=cos^(2)theta-sin^(2)theta is …………

If 3sintheta=2costheta then the value of sin2theta is …………..

If cot theta=(4)/(3) , then find the value of sin theta,cos theta and cos ectheta in first quadrant. If sin theta+cos ec theta=2 then find the value of sin^(8 )theta+cos ec^(8)theta .