Home
Class 12
MATHS
if tanbeta=(nsinalphacosbeta)/(1-nsin^2a...

if `tanbeta=(nsinalphacosbeta)/(1-nsin^2alpha)` then prove that `tan(alpha-beta)=(1-n)tanalpha.`

A

`n tan alpha`

B

`(1-n)tan alpha`

C

`(1+n)tan alpha`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If costheta=(cosalphacosbeta)/(1-sinalphasinbeta) then prove that tan((theta)/(2))=(tan((alpha)/(2))-tan((beta)/(2)))/(1-tan((alpha)/(2))tan((beta)/(2)))

If sintheta=nsin(theta+2alpha) then prove that, tan(theta+alpha)=(1+n)/(1-n)tanalpha

If msintheta=nsin(theta+2alpha) , then prove that tan(theta+alpha)cotalpha=(m+n)/(m-n) .

If cosalpha+cosbeta=0=sinalpha+sinbeta, then prove that cos2alpha+cos2beta=-2cos(alpha+beta) .

If sin(theta+alpha)=aandsin(theta+beta)=b , then prove that cos2(alpha-beta)-4abcos(alpha-beta)=1-2a^(2)-2b^(2) .

If alpha and beta are roots of the equation acostheta+bsintheta=c then prove that, sin(alpha+beta)=(2ab)/(a^(2)+b^(2))

If acos2theta+bsin2theta=c has alphaandbeta as its roots, then prove that tanalpha+tanbeta=(2b)/(a+c) .

The value of the determinant |{:(1,sin(alpha-beta)theta,cos (alpha-beta)theta),(a, sinalphatheta,cos alphatheta),(a^(2),sin(alpha-beta)theta,cos(alpha-beta)theta):}| is independent of

If alpha+beta=(pi)/(4) , then the value of (1+tanalpha)(1+tanbeta) is

If 3 sin alpha=5 sin beta , then (tan((alpha+beta)/2))/(tan ((alpha-beta)/2))=