Home
Class 12
MATHS
If f (theta) = |sin theta| + |cos theta...

If `f (theta) = |sin theta| + |cos theta|, theta in R`, then

A

`f(theta) in [0, 2]`

B

`f(theta)in [0, sqrt(2)]`

C

`f(theta) in [ 0, 1]`

D

`f(theta) in [1, sqrt(2)]`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

If the coordinates of a variable point be (cos theta + sin theta, sin theta - cos theta) , where theta is the parameter, then the locus of P is

If f(x)=|{:( sin^2 theta , cos^(2) theta , x),(cos^(2) theta , x , sin^(2) theta ),( x , sin^(2) theta , cos^2 theta ):}|, theta in (0,pi//2), then roots of f(x)=0 are

The diameter of the nine point circle of the triangle with vertices (3, 4), (5 cos theta, 5 sin theta) and (5 sin theta, -5 cos theta) , where theta in R , is

Vertices of a variable triangle are (3, 4), (5 cos theta, 5 sin theta) and (5 sin theta, -5 cos theta) , where theta in R . Locus of its orthocentre is

If costheta + sin theta = sqrt2 cos theta , prove that cos theta - sin theta = sqrt2 sin theta .

If 0 lt theta lt (pi)/2 and 5 tan theta = 4 then (5 sin theta - 3 cos theta) / (sintheta +2 cos theta ) = 5/14

P_1 and P_2 are the length of perpendicular from origin to the line x sec theta + y cosec theta =a and x cos theta - y sin theta = a cos 2 theta then ….... of the following is valid.

Let theta in (pi//4,pi//2), then Statement I (cos theta)^(sin theta ) lt ( cos theta )^(cos theta ) lt ( sin theta )^(cos theta ) Statement II The equation e^(sin theta )-e^(-sin theta )=4 ha a unique solution.

If sin theta_1 + sintheta_2 + sin theta_3=3, then find the value of cos theta_1 + cos theta_2 + cos theta_3.

Show that the normal at any point theta to the curve x = a cos theta + a theta sin theta, y = a sin theta - a theta cos theta is at the constant distance from origin.