Home
Class 12
MATHS
IfI1=int0^(pi/2)f(sinx)sinxdx and I2=int...

If`I_1=int_0^(pi/2)f(sinx)sinxdx` and `I_2=int_0^(pi/2)f(cosx)cosxdx`then`I_1/I_2`

Text Solution

Verified by Experts

`3x-7y^2+3xyz=3(2)-7(-4)^2+3(2)(-4)(1)`
`=6-7xx16-6xx4`
`=6-112-24`
`=6-136`
`=130`
Promotional Banner

Topper's Solved these Questions

  • APPLICATION OF DERIVATIVES

    ALLEN |Exercise All Questions|1 Videos
  • BASIC MATHS

    ALLEN |Exercise Do yourself -2 :|4 Videos

Similar Questions

Explore conceptually related problems

If I_n = int_0^(pi/2) (sin^2 nx)/(sin^2 x) dx , then

Evaluation of definite integrals by subsitiution and properties of its : I_(1)=int_(a)^(pi-a)xf(sinx)dx,I_(2)=int_(a)^(pi-a)f(sinx)dx then I_(2)=……..

Prove that I_(1),I_(2),I_(3)"..." form an AP, if (i) I_(n)=int_(0)^(pi)(sin2nx)/(sinx)dx (ii) I_(n)=int_(0)^(pi)((sinnx)/(sinx))^(2)dx .

Fundamental theorem of definite integral : I=int_(0)^(1)(sinx)/(sqrtx)dx and J=int_(0)^(1)(cosx)/(sqrtx)dx then which of the following statement is true ?

Evaluate int_(0)^(pi/2)logsinxdx

Evaluate int_(0)^(pi)(xsinx)/(1+cos^(2)x)dx

Prove that int_(0)^(pi/2)sin2xlogtanxdx=0 .

If I_(n)=int_(0)^(pi)(1-sin2nx)/(1-cos2x)dx then I_(1),I_(2),I_(3),"….." are in

Method of integration by parts : I_(1)=int sin^(-1)x dx and I_(2)= int sin^(-1) sqrt(1-x^(2))dx then.....

int_(0)^(pi)|cosx|dx=.......... .