Home
Class 11
MATHS
The expression (sin(alpha+theta)-"sin"(a...

The expression `(sin(alpha+theta)-"sin"(alpha-theta))/(cos(beta-theta)-cos(beta+theta))` is - independent of `alpha` b. independent of `beta` c. independent of `theta` d. independent of `alpha\ a n d\ beta`

Promotional Banner

Similar Questions

Explore conceptually related problems

The expression nsin^(2) theta + 2 n cos( theta + alpha ) sin alpha sin theta + cos2(alpha + theta ) is independent of theta , the value of n is

The maximum value of the expression 1/(sin^2 theta + 3 sin theta cos theta + 5cos^2 theta) is

(sin 5theta+ sin 2theta- sin theta)/(cos5theta+2cos3theta+2cos^2theta+costheta) is equal to

Show that (1)/( cos theta ) -cos theta =tan theta .sin theta

If cot (alpha + beta )=0 , then sin(alpha+2beta ) =

Prove : (2 sin theta cos theta-cos theta)/(1-sin theta+sin^(2) theta-cos^(2) theta)=cot theta

2(sin^6theta+cos^6theta)-3(sin^4theta+cos^4theta) is equal to

If 3 sin alpha=5 sin beta , then (tan((alpha+beta)/2))/(tan ((alpha-beta)/2))=

If f (theta) = |sin theta| + |cos theta|, theta in R , then