Home
Class 11
MATHS
If A+B+C=pi, prove that tan^2A/2+tan^2B/...

If `A+B+C=pi,` prove that `tan^2A/2+tan^2B/2+tan^2C/2geq1.`

Promotional Banner

Similar Questions

Explore conceptually related problems

If A+B+C=pi , prove that : cot (A/2)+ cot(B/2) + cot(C/2) = cot(A/2) cot (B/2) cot (C/2)

Prove that tan^-1(1/7)+tan^-1(1/13)=tan^-1(2/9)

Prove that: 2tan^(-1)1/2+tan^(-1)1/7=tan^(-1)(31)/(17)

Prove that, tan65^(@)=tan25^(@)+2tan40^(@) .

Prove that: tan^-1(1/4)+tan^-1(2/9)=1/2 cos^-1(3/5) .

Prove that: tan^(-1) \ 2/3=1/2tan^(-1) \ 12/5

Prove that: tan^(-1)x+tan^(-1)(1/x)=pi/2

Prove that (1-tan^2(pi/4-A))/(1+tan^2(pi/4-A))=sin2Adot

Prove that tan^(-1) 2 + tan^(-1) 3 = (3pi)/4

Show that "tan"^(-1)1/2+"tan"^(-1)2/11="tan"^(-1)3/4