Home
Class 12
CHEMISTRY
Cu^(+) + e rarr Cu, E^(@) = X(1) volt, ...

`Cu^(+) + e rarr Cu, E^(@) = X_(1)` volt,
`Cu^(2+) + 2e rarr Cu, E^(@) = X_(2)`X_(2) volt
For `Cu^(2+) + e rarr Cu^(+), E^(@)` will be :

A

`x_(1) -2x_(2)`

B

`x_(1)+2x_(2)`

C

`x_(1)-x_(2)`

D

`2x_(2)-x_(1)`

Text Solution

Verified by Experts

The correct Answer is:
D

`Cu^(+)+e^(-)rarr Cu Delta G_(1)= -F E^(@)= -FX_(1)`
`Cu^(2+)+2e^(-)rarr Cu Delta G_(2)= -2F E^(@)= -2 FX_(2)`
`Cu^(2+)+e^(-)rarr Cu^(+) Delta G_(3)= -2F E^(@)= -2 FX_(2)`
`Delta G_(3) = Delta G_(2)-Delta G_(1) -F E^(@)= -2 FX_(2)+FX_(1)`
`E^(@)=2X_(2)-X_(1)`
Promotional Banner

Similar Questions

Explore conceptually related problems

Given, standard electrode potentials, {:(Fe^(3+)+3e^(-) rarr Fe,,,E^(@) = -0.036 " volt"),(Fe^(2+)+2e^(-)rarr Fe,,,E^(@) = - 0.440 " volt"):} The standard electrode potential E^(@) for Fe^(3+) + e^(-) rarr Fe^(2+) is :

For the reduction of NO_(3)^(c-) ion in an aqueous solution, E^(c-) is +0.96V , the values of E^(c-) for some metal ions are given below : i.V^(2+)(aq)+2e^(-)rarr V, " "E^(c-)=-1.19V ii. Fe^(3+)(aq)+3e^(-) rarr Fe, " "E^(c-)=-0.04V iii. Au^(3+)(aq)+3e^(-) rarr Au, " "E^(c-)=+140V iv. Hg^(2+)(aq)+2e^(-) rarr Hg, " "E^(c-)=+0.86V The pair (s) of metals that is // are oxidized by NO_(3)^(c-) in aqueous solution is // are

Copper reduced NO_(3)^(-) into NO and NO_(2) depending upon conc.of HNO_(3) in solution. Assuming [Cu^(2+)] = 0.1M , and P_(NO) = P_(NO_(2)) = 10^(-3) atm and using data answer the following questions: E_(Cu^(2+)//Cu)^(@) =+ 0.34 volt, at 298K (RT)/(F) (2.303) = 0.06 volt E_(cell) for reduction of NO_(3)^(-) rarr NO by Cu(s) when [HNO_(3)] = 1M is [At t = 298]

For the redox reaction: Zn(s) +Cu^(2+) (0.1M) rarr Zn^(2+) (1M)+Cu(s) taking place in a cell, E_(cell)^(@) is 1.10 volt. E_(cell) for the cell will be (2.303 (RT)/(F) = 0l.0591)

Given: E_(Zn^(+2)//Zn)^(@) =- 0.76V E_(Cu^(+2)//Cu)^(@) = +0.34V K_(f)[Cu(NH_(3))_(4)]^(2+) = 4 xx 10^(11) (2.303R)/(F) = 2 xx 10^(-4) Find emf of cell at 200K if E^(@) values are independent of temperature [log 2= 0.3]