Home
Class 12
MATHS
f(n)=sum(r=1)^(n) [r^(2)(""^(n)C(r)-""^(...

`f(n)=sum_(r=1)^(n) [r^(2)(""^(n)C_(r)-""^(n)C_(r-1))+(2r+1)(""^(n)C_(r ))]`, then

A

`f(30)=960`

B

`f(21)=483`

C

`f(16)=64`

D

`f(11)=44`

Text Solution

Verified by Experts

The correct Answer is:
A, B

`f(n)=underset(r=1)overset(n)sum[r^(2)(.^nC_(r)-.^nC_(r=1))+(2r).^nC_(r)+.^nC_(r)]`
`=underset(r-1)overset(n)sum[(r^(2)+2r+1).^nC_(r)-r^(2).^nC_(r-1)]`
`=underset(r=1)overset(n)sum[(r+1)^(2).^nC_(r)-r^(2).^nC_(r=1)]=underset(r=1)overset(n)sum[V_(r-1)-V_(r)]`
`=V_(2)-V_(1)+V_(3)-V_(2)+...+V_(n+1)-V_(n)`
`=V_(n+1)-V_(1)=(n+1)^(2).^(n)C_(n)-1=n^(2)+2n.`
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    ALLEN |Exercise part-2 Mathematic|17 Videos
  • TEST PAPERS

    ALLEN |Exercise part-2 Mathematics|48 Videos
  • TEST PAPERS

    ALLEN |Exercise MATHEMATICS|136 Videos
  • TEST PAPER

    ALLEN |Exercise CHEMISTRY SECTION-II|16 Videos
  • VECTOR ALGEBRA

    ALLEN |Exercise All Questions|1 Videos

Similar Questions

Explore conceptually related problems

sum_(r=0)^(n).^(n)C_(r)4^(r)=..........

""^(n)C_(n-r)+3.""^(n)C_(n-r+1)+3.""^(n)C_(n-r+2)+""^(n)C_(n-r+3)=""^(x)C_(r)

((n),(r)) = (""^(n)P_(r))/(K), then K = ......

If ((n),(r)) = ((n),(r+2)), then r = …… ,

((n),(r))+2.((n),(r-1))+((n),(r-2))=((n+2),(r))

sum_(r=1)^n(2r+1)=...... .

((n),(r))+((n),(r-1))=((n+1),(r-1))

if ((n),(r)) + ((n),(r-1)) = ((n + 1),(x)), then x = ....

If sum_(r=1)^(n)T_(r)=(n)/(8)(n+1)(n+2)(n+3)," find "sum_(r=1)^(n)(1)/(T_(r)) .

if .^(2n)C_(2):^(n)C_(2)=9:2 and .^(n)C_(r)=10 , then r is equal to