Home
Class 12
MATHS
Let 2(1+x^(3))^(100)=sum(r=0)^(300) {a(r...

Let `2(1+x^(3))^(100)=sum_(r=0)^(300) {a_(r)x^(r)-cos.(rpi)/(2)},"if"sum_(r=0)^(150) a_(2r)=s`, then `s-2^([log_(2)s]` is (where lfloor.rfloor denotes greatest integer function)

Text Solution

Verified by Experts

The correct Answer is:
A

`2(1+x^(3))^(100)=[a_(0)+a_(1)x+a_(2)x^(2)+....+a_(300)x^(300)]-1...(1)`
Replace x by -x, we get
`2(1-x^(3))^(100)=[a_(0)-a_(1)x+a_(2)x^(2)-...+a_(300^(x^(300)))]-1...(2)`
Additng (1)and (2),we get
`2(1+x^(3))^(100)+2(1-x^3)^(100)=2(a_(0)+a_(2)x^(2)+...+a_(300)x^(300))-2`
Put `x=1`,
we get `a_(0)+a_(2)+a_(4)+...+a_(300)=2^(100) + l = s`
`impliess-2^([log_(2)s])=2^(100)+1-2^(100)=1`
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    ALLEN |Exercise part-2 Mathematic|17 Videos
  • TEST PAPERS

    ALLEN |Exercise part-2 Mathematics|48 Videos
  • TEST PAPERS

    ALLEN |Exercise MATHEMATICS|136 Videos
  • TEST PAPER

    ALLEN |Exercise CHEMISTRY SECTION-II|16 Videos
  • VECTOR ALGEBRA

    ALLEN |Exercise All Questions|1 Videos

Similar Questions

Explore conceptually related problems

domin of f(x)=sin^-1[log_2(x^2/2)] where [ . ] denotes the greatest integer function.

The function f(x) = [x] cos((2x-1)/2) pi where [ ] denotes the greatest integer function, is

If [sin x]+[sqrt(2) cos x]=-3 , x in [0,2pi] , (where ,[.] denotes th greatest integer function ), then

The sum of the roots of the equation cos^(-1)(cosx)=[x]. where [x] denotes greatest integer function, is

Find the domain and range of f(x)=log[ cos|x|+1/2] ,where [.] denotes the greatest integer function.

If sum_(r=1)^(n)T_(r)=(n)/(8)(n+1)(n+2)(n+3)," find "sum_(r=1)^(n)(1)/(T_(r)) .

Number of solutions of the equation cos[x]=e^(2x-1),x in [0,2pi] , where[.] denotes the greatest integer function is

Find the values of x graphically satisfying [x]-1+x^(2)le0 where [.] denotes the greatest integer function.

Let r,s and t be the roots of the equation 8x^(3)+1001x+2008=0 and if 99lamda=(r+s)^(3)+(s+t)^(3)+(t+r)^(3) , the value of [lamda] is (where [.] denotes the greatest integer function)

If the domain of y=f(x)i s[-3,2], then find the domain of g(x)=f(|[x]|),w h e r[] denotes the greatest integer function.