Home
Class 12
CHEMISTRY
An element X having vapour density equal...

An element X having vapour density equal to 40 in gaseous state undergoes crystal formation at low temperature in FCC pattern. Number of unit cells in `1280 g` of X is represented by `nxxN_(A).` Then the value of 'n' is:

A

`1`

B

`2`

C

`3`

D

`4`

Text Solution

Verified by Experts

The correct Answer is:
D

`M.wt=80`
No. of unit cells `=(1280)/(80xx4)=4`
Promotional Banner

Similar Questions

Explore conceptually related problems

Surafce tension is exhibited by liquids due to force of attraction between the molecules of the liquid .The surface tension decreases with increases in temperature and vanishes at boiling point Given that the latent heat of vaporization for water L_(v)=540(kcal)/(kg) the mechanical equivalent of heat J=4.2(J)/(cal) density of water rho_(w)=10^(3)kgl^(-1) ,Avogadro'sno. N_(A)=6.0xx10^(26)k " mole"^(-1) . Molecular weight of water M_(A)=10kg , for 1k mole . (a) Estimate the energy required for one molecule of water to evaporated. (b) Show that the inter molecular distance for water is d=((M_(A))/(N_(A))xx(1)/(rho_(w)))^((1)/(3)) and find its value. (c ) 1 g of water in the vapour state at 1 atm occupies 1601cm^(3) , estimate the intermolecular distance at boiling point in the vapour state. (d) During vaporisation a molecule overcomes a force F, assumed constant to go from an inter molecular distance d to d .Estimate the value of F. (e ) Caculate (F)/(d) , which is a measure of the surface tension.

When a particle is restricted to move aong x axis between x =0 and x = a , where a is of nanometer dimension. Its energy can take only certain specific values. The allowed energies of the particle moving in such a restricted region, correspond to the formation of standing waves with nodes at its ends x = 0 and x = a . The wavelength of this standing wave is realated to the linear momentum p of the particle according to the de Breogile relation. The energy of the particl e of mass m is reelated to its linear momentum as E = (p^(2))/(2m) . Thus, the energy of the particle can be denoted by a quantum number 'n' taking values 1,2,3,"......." ( n=1 , called the ground state) corresponding to the number of loop in the standing wave. Use the model decribed above to answer the following three questions for a particle moving in the line x = 0 to x =a . Take h = 6.6 xx 10^(-34) J s and e = 1.6 xx 10^(-19) C . The allowed energy for the particle for a particular value of n is proportional to

When a particle is restricted to move aong x axis between x =0 and x = a , where a is of nanometer dimension. Its energy can take only certain specific values. The allowed energies of the particle moving in such a restricted region, correspond to the formation of standing waves with nodes at its ends x = 0 and x = a . The wavelength of this standing wave is realated to the linear momentum p of the particle according to the de Breogile relation. The energy of the particl e of mass m is reelated to its linear momentum as E = (p^(2))/(2m) . Thus, the energy of the particle can be denoted by a quantum number 'n' taking values 1,2,3,"......." ( n=1 , called the ground state) corresponding to the number of loop in the standing wave. Use the model decribed above to answer the following three questions for a particle moving in the line x = 0 to x =a . Take h = 6.6 xx 10^(-34) J s and e = 1.6 xx 10^(-19) C . If the mass of the particle is m = 1.0 xx 10^(-30) kg and a = 6.6 nm , the energy of the particle in its ground state is closet to

When a particle is restricted to move aong x axis between x =0 and x = a , where a is of nanometer dimension. Its energy can take only certain specific values. The allowed energies of the particle moving in such a restricted region, correspond to the formation of standing waves with nodes at its ends x = 0 and x = a . The wavelength of this standing wave is realated to the linear momentum p of the particle according to the de Breogile relation. The energy of the particl e of mass m is reelated to its linear momentum as E = (p^(2))/(2m) . Thus, the energy of the particle can be denoted by a quantum number 'n' taking values 1,2,3,"......." ( n=1 , called the ground state) corresponding to the number of loop in the standing wave. Use the model decribed above to answer the following three questions for a particle moving in the line x = 0 to x =a . Take h = 6.6 xx 10^(-34) J s and e = 1.6 xx 10^(-19) C . The speed of the particle, that can take disrete values, is proportional to

An electromagnetic wave can be represented by E = A sin (kx- omega t + phi) , where E is electric field associated with wave, According this equation, for any value of x, E remains sinusoidal for -oolt t lt oo . Obviously this corresponds to an idealised situation because radiation from ordinary sources consists of finite size wavetrains. In general, electric field remains sinusoidal only for times of order tau_(c) ' which is called coherence time. In simpler language it means that for times of order tau_(c)' a wave will have a definite phase. The finite value of coherence time could be due to many factors, for example if radiating atom undergoes collision with another atom then wave train undergoes an abrupt phase change or due to the fact that an atom responsible for emitting radiation has a finite life time in the energy level from which it drops to lower energy level, while radiating. Concept of coherence time can be easily understood using young's double slit experiment. Let interference patten is observed around point P at time t , due to superposition of waves emanting from S_(1) and S_(2) at times t =(r_(1))/(c) and (r_(2))/(c) respectively, where r_(1) and r_(2) are the distances S_(1) P & S_(2)P . Obviously if (r_(2)-r_(1))/(c) lt lt tau_(e),{"where" " "c = 3xx10^(8)m//s} then, wavetrain arriving at point P from S_(1) & S_(2) will have a definite phase relationship and an interference pattern of good contranst will be obtained. If coherence time is of order 10^(-10) second and screen is placed at a very large distance from slits in the given figure, then:-

An electromagnetic wave can be represented by E = A sin (kx- omega t + phi) , where E is electric field associated with wave, According this equation, for any value of x, E remains sinusoidal for -oolt t lt oo . Obviously this corresponds to an idealised situation because radiation from ordinary sources consists of finite size wavetrains. In general, electric field remains sinusoidal only for times of order tau_(c) ' which is called coherence time. In simpler language it means that for times of order tau_(c)' a wave will have a definite phase. The finite value of coherence time could be due to many factors, for example if radiating atom undergoes collision with another atom then wave train undergoes an abrupt phase change or due to the fact that an atom responsible for emitting radiation has a finite life time in the energy level from which it drops to lower energy level, while radiating. Concept of coherence time can be easily understood using young's double slit experiment. Let interference patten is observed around point P at time t , due to superposition of waves emanting from S_(1) and S_(2) at times t =(r_(1))/(c) and (r_(2))/(c) respectively, where r_(1) and r_(2) are the distances S_(1) P & S_(2)P . Obviously if (r_(2)-r_(1))/(c) lt lt tau_(e),{"where" " "c = 3xx10^(8)m//s} then, wavetrain arriving at point P from S_(1) & S_(2) will have a definite phase relationship and an interference pattern of good contranst will be obtained. If coherence time is of order 10^(-10) second and screen is placed at a very large distance from slits in the given figure, then:-

There is another useful system of units, besides the SI/mKs. A system, called the cgs (centimeter-gram-second) system. In this system Coloumb's law is given by vecF =(Qq)/(r^(2)).hatr where the distance is measured in cm (= 10^(-2) m), F in dynes (= 10^(-5) N) and the charges in electrostatic units (es units), where 1 es unit of charge 1/(3) xx 10^(-9) C . The number [3] actually arises from the speed of light in vacuum which is now taken to be exactly given by c = 2.99792458 xx 10^8 m/s. An approximate value of c then is c = [3] xx 10^8 m/s. (i) Show that the coloumb law in cgs units yields 1 esu of charge = 1 (dyne) 1/2 cm. Obtain the dimensions of units of charge in terms of mass M, length L and time T. Show that it is given in terms of fractional powers of M and L. (ii) Write 1 esu of charge = x C, where x is a dimensionless number. Show that this gives: 1/(4piepsilon_(0)) = 10^(-9)/x^(2) (Nm^(2))/C^(2) with x=1/[3] xx 10^(-9) , we have 1/(4pi epsilon_(0)) = [3]^(2) xx 10^(9) (Nm^(2))/C^(2) or 1/(4pi epsilon_(0)) = (2.99792458)^(2) xx 10^(9) (Nm^(2))/C^(2) (exactly).