Home
Class 11
PHYSICS
If vec(A)=4hat(i)+nhat(j)-2hat(k) and ve...

If `vec(A)=4hat(i)+nhat(j)-2hat(k)` and `vec(B)=2hat(i)+3hat(j)+hat(k)`, then find the value of n so that `vec(A) bot vec(B)`

Text Solution

Verified by Experts

Dot product of two mutually perpendicular vectors is zero `vec(A).vec(B)=0`
`:. (4hat(i)+nhat(j)-2hat(k)).(2hat(i)+3hat(j)+hat(k))=0rArr(4xx2)+(nxx3)+(-2xx1)=0rArr3n=-6 rArr n=-2`
Promotional Banner

Topper's Solved these Questions

  • MISCELLANEOUS

    ALLEN |Exercise Part -II Example|61 Videos
  • MISCELLANEOUS

    ALLEN |Exercise Part -II Example Some worked out Examples|1 Videos
  • KINEMATICS (MOTION ALONG A STRAIGHT LINE AND MOTION IN A PLANE)

    ALLEN |Exercise BEGINNER S BOX-7|8 Videos
  • PHYSICAL WORLD, UNITS AND DIMENSIONS & ERRORS IN MEASUREMENT

    ALLEN |Exercise EXERCISE-IV|7 Videos

Similar Questions

Explore conceptually related problems

If vec(A)=hat(i)+2hat(j)+3 hat(k), vec(B)=-hat(i)+hat(j)+4hat(k) and vec(C)=3hat(i)-3hat(j)-12 hat(k) , then find the angle between the vectors (vec(A)+vec(B)+vec(C)) and (vec(A)xxvec(B)) in degrees.

If vec(A)=2hat(i)+hat(j)+hat(k) and vec(B)=hat(i)+2hat(j)+2hat(k) , find the magnitude of compinent of (vec(A)+vec(B)) along vec(B)

If vec(A) =2hat(i)-2hat(j) and vec(B)=2hat(k) then vec(A).vec(B) ……

If the angle between vec(A) = 2hat(i)+4hat(j)+2hat(k) and vec(B) =2hat(i) +hat(k) " is " 30^(@) , then find the projection of vec(B ) on A .

Two vector vec(a)=3hat(i)+8hat(j)-2hat(k) and vec(b)=6hat(i)+16hat(j)+xhat(k) are such that the component of vec(b) perpendicular to vec(a) is zero. Then the value of x will be :-

Consider three vectors vec(A)=2 hat(i)+3 hat(j)-2 hat(k)" " vec(B)=5hat(i)+nhat(j)+hat(k)" " vec(C)=-hat(i)+2hat(j)+3 hat(k) If these three vectors are coplanar, then value of n will be

If vectors vec(A)=(hat(i)+2hat(j)+3hat(k))m and vec(B)=(hat(i)-hat(j)-hat(k))m represent two sides of a triangle, then the third side can have length equal to :

Let r=a+lambdal and r=b+mum br be two lines in space, where a= 5hat(i)+hat(j)+2hat(k), b=-hat(i)+7hat(j)+8hat(k), l=-4hat(i)+hat(j)-hat(k), and m=2hat(i)-5hat(j)-7hat(k) , then the position vector of a point which lies on both of these lines, is

Following forces start acting on a particle at rest at the origin of the co-ordinate system simultaneously vec(F)_(1)=-4hat(i)+5hat(j)+5hat(k), vec(F)_(2)=-5hat(i)+8hat(j)+6 hat(k), vec(F)_(3)=-3 hat(i)+4 hat(j)-7hat(k) and vec(F)_(4)=12hat(i)-3hat(j)-2hat(k) then the particle will move-

If the position vector of the vertices of a triangle are hat(i)-hat(j)+2hat(k), 2hat(i)+hat(j)+hat(k) & 3hat(i)-hat(j)+2hat(k) , then find the area of the triangle.