Home
Class 11
PHYSICS
Three vector vec(A),vec(B), vec(C ) sati...

Three vector `vec(A)`,`vec(B)`, `vec(C )` satisfy the relation `vec(A)*vec(B)=0`and `vec(A).vec(C )=0`. The vector `vec(A)` is parallel to

A

`vec(B)`

B

`vec(C)`

C

`vec(B). vec(C)`

D

`vec(B)xxvec(C)`

Text Solution

Verified by Experts

The correct Answer is:
D

`vec(A).vec(B)=0rArr vec(A)bot vec(B)` & `vec(A).vec(C)=0rArrvec(A) bot vec(C)`
But `vec(B)xxvec(C)` is perpendicular to both `vec(B)` and `vec(C)` so `vec(A)` is parallel to `vec(B)xxvec(C)`
Promotional Banner

Topper's Solved these Questions

  • MISCELLANEOUS

    ALLEN |Exercise Part -II Example|61 Videos
  • MISCELLANEOUS

    ALLEN |Exercise Part -II Example Some worked out Examples|1 Videos
  • KINEMATICS (MOTION ALONG A STRAIGHT LINE AND MOTION IN A PLANE)

    ALLEN |Exercise BEGINNER S BOX-7|8 Videos
  • PHYSICAL WORLD, UNITS AND DIMENSIONS & ERRORS IN MEASUREMENT

    ALLEN |Exercise EXERCISE-IV|7 Videos

Similar Questions

Explore conceptually related problems

Three vectors vec(a),vec(b) and vec( c ) satisfy the condition vec(a)+vec(b)+vec( c )=vec(0) . Evaluate the quantity mu=vec(a).vec(b)+vec(b).vec( c )+vec( c ).vec(a) , if |vec(a)|=1,|vec(b)|=4 and |vec( c )|=2 .

Let vec(A), vec(B) and vec(C) , be unit vectors. Suppose that vec(A).vec(B)=vec(A).vec(C)=0 and the angle between vec(B) and vec(C) is pi/6 then

The vector (vec(a)+3vec(b)) is perpendicular to (7 vec(a)-5vec(b)) and (vec(a)-4vec(b)) is perpendicular to (7vec(a)-2vec(b)) . The angle between vec(a) and vec(b) is :

If vec(a) is a unit vector and (vec(x)-vec(a)).(vec(x)+vec(a))=8 then find |vec(x)| .

Vector vec(a)=hati-hatj,vec(b)=hati+hatj+hatk . The vector vec( c ) is such that vec(a)xx vec( c )+vec(b)=0 and vec(a).vec( c )=4 then |vec( c )|^(2) = ……………

Show that the vectors vec(a),vec(b) and vec( c ) coplanar if vec(a)+vec(b),vec(b)+vec( c ) and vec( c )+vec(a) are coplanar.

Vector product of three vectors is given by vec(A)xx(vec(B)xxvec(C))=vec(B)(vec(A).vec(C))-vec(C)(vec(A).vec(B)) The plane of vector vec(A)xx(vec(A)xxvec(B)) lies in the plane of

Let vec(a),vec(b) and vec( c ) be unit vectors such that vec(a).vec(b)=vec(a).vec( c )=0 and the angle between vec(b) and vec( c ) is (pi)/(6) . Prove that vec(a)=+-2(vec(b)xx vec( c )) .

If vec(a).vec(a)=0 and vec(a).vec(b)=0 then what can be concluded about the vector vec(b) ?

For the vectors vec(x) and vec(y),vec(x)+vec(y)=vec(a),vec(x)xx vec(y)=vec(b) and vec(x).vec(a)=1 then vec(x) = ………….., vec(y) = ……….