Home
Class 11
PHYSICS
Consider three vectors vec(A)=2 hat(i)...

Consider three vectors
`vec(A)=2 hat(i)+3 hat(j)-2 hat(k)" " vec(B)=5hat(i)+nhat(j)+hat(k)" " vec(C)=-hat(i)+2hat(j)+3 hat(k)`
If these three vectors are coplanar, then value of n will be

A

0

B

12

C

16

D

18

Text Solution

Verified by Experts

The correct Answer is:
D

For coplanar vectors `vec(A).(vec(B)xxvec(C))=|(A_(x),A_(y),A_(z)),(B_(x),B_(y),B_(z)),(C_(x),C_(y),C_(z))|=0`
`implies |(2,3,-2),(5,n,1),(-1,2,3)|=2(3n-2)-3(15+1)-2 (10+n)=0 implies4n-72=0implies n=18`
Promotional Banner

Topper's Solved these Questions

  • MISCELLANEOUS

    ALLEN |Exercise Part -II Example|61 Videos
  • MISCELLANEOUS

    ALLEN |Exercise Part -II Example Some worked out Examples|1 Videos
  • KINEMATICS (MOTION ALONG A STRAIGHT LINE AND MOTION IN A PLANE)

    ALLEN |Exercise BEGINNER S BOX-7|8 Videos
  • PHYSICAL WORLD, UNITS AND DIMENSIONS & ERRORS IN MEASUREMENT

    ALLEN |Exercise EXERCISE-IV|7 Videos

Similar Questions

Explore conceptually related problems

Angle between the vectors vec(a)=-hat(i)+2hat(j)+hat(k) and vec(b)=xhat(i)+hat(j)+(x+1)hat(k)

Find the angle between vec(P) = - 2hat(i) +3 hat(j) +hat(k) and vec(Q) = hat(i) +2hat(j) - 4hat(k)

If vec(A)=4hat(i)+nhat(j)-2hat(k) and vec(B)=2hat(i)+3hat(j)+hat(k) , then find the value of n so that vec(A) bot vec(B)

The compenent of vec(A)=hat(i)+hat(j)+5hat(j) perpendicular to vec(B)=3hat(i)+4hat(j) is

If vec(A) =2hat(i)-2hat(j) and vec(B)=2hat(k) then vec(A).vec(B) ……

If vec(A)=2hat(i)+hat(j)+hat(k) and vec(B)=hat(i)+2hat(j)+2hat(k) , find the magnitude of compinent of (vec(A)+vec(B)) along vec(B)

Two vector vec(a)=3hat(i)+8hat(j)-2hat(k) and vec(b)=6hat(i)+16hat(j)+xhat(k) are such that the component of vec(b) perpendicular to vec(a) is zero. Then the value of x will be :-

The unit vactor parallel to the resultant of the vectors vec(A)=4hat(i)+3hat(j)+6hat(k) and vec(B)=-hat(i)+3hat(j)-8hat(k) is :-

If vec(A)=hat(i)+2hat(j)+3 hat(k), vec(B)=-hat(i)+hat(j)+4hat(k) and vec(C)=3hat(i)-3hat(j)-12 hat(k) , then find the angle between the vectors (vec(A)+vec(B)+vec(C)) and (vec(A)xxvec(B)) in degrees.

If vectors vec(A)=(hat(i)+2hat(j)+3hat(k))m and vec(B)=(hat(i)-hat(j)-hat(k))m represent two sides of a triangle, then the third side can have length equal to :