Home
Class 11
PHYSICS
Vector product of three vectors is given...

Vector product of three vectors is given by `vec(A)xx(vec(B)xxvec(C))=vec(B)(vec(A).vec(C))-vec(C)(vec(A).vec(B))`
The value of `hat(i)xx(hat(j)xxhat(k))` is

A

0

B

`vec(0)`

C

`1`

D

`3`

Text Solution

Verified by Experts

The correct Answer is:
B

`hat(i)xx(hat(j)xxhat(k))=hat(j)(hat(i).hat(k))-hat(k)(hat(i).hat(j))=vec(0)`
Promotional Banner

Topper's Solved these Questions

  • MISCELLANEOUS

    ALLEN |Exercise Part -II Example|61 Videos
  • MISCELLANEOUS

    ALLEN |Exercise Part -II Example Some worked out Examples|1 Videos
  • KINEMATICS (MOTION ALONG A STRAIGHT LINE AND MOTION IN A PLANE)

    ALLEN |Exercise BEGINNER S BOX-7|8 Videos
  • PHYSICAL WORLD, UNITS AND DIMENSIONS & ERRORS IN MEASUREMENT

    ALLEN |Exercise EXERCISE-IV|7 Videos

Similar Questions

Explore conceptually related problems

Vector product of three vectors is given by vec(A)xx(vec(B)xxvec(C))=vec(B)(vec(A).vec(C))-vec(C)(vec(A).vec(B)) The value of hat(i)xx(hat(i)xxhat(j))+hat(j)xx(hat(j)xxhat(k))+hat(k)xx(hat(k)xxhat(i)) is

Vector product of three vectors is given by vec(A)xx(vec(B)xxvec(C))=vec(B)(vec(A).vec(C))-vec(C)(vec(A).vec(B)) The plane of vector vec(A)xx(vec(A)xxvec(B)) lies in the plane of

The value of (vec(A)+vec(B)).(vec(A)xxvec(B)) is :-

(vec(a)xx vec(b))xx vec( c )=vec(a)xx(vec(b)xx vec( c )) . If vec(a)*vec( c ) ……………

Prove that [vec(a)+vec(b), vec(b)+vec( c ), vec( c )+vec(a)]=2[vec(a),vec(b),vec( c )] .

Show that, (vec(a)-vec(b))xx(vec(a)+vec(b))=2(vec(a)xx vec(b)) .

Prove that [vec(a),vec(b),vec( c )+vec(d)]=[vec(a),vec(b),vec( c )]+[vec(a),vec(b),vec(d)] .

For the vectors vec(x) and vec(y),vec(x)+vec(y)=vec(a),vec(x)xx vec(y)=vec(b) and vec(x).vec(a)=1 then vec(x) = ………….., vec(y) = ……….

If |vec(A)xxvec(B)|=sqrt(3)vec(A).vec(B) , then the value of |vec(A)+vec(B)| is