Home
Class 11
PHYSICS
Vector product of three vectors is given...

Vector product of three vectors is given by `vec(A)xx(vec(B)xxvec(C))=vec(B)(vec(A).vec(C))-vec(C)(vec(A).vec(B))`
The plane of vector `vec(A)xx(vec(A)xxvec(B))` lies in the plane of

A

`vec(A)`

B

`vec(B)`

C

`vec(A)xxvec(B)`

D

`vec(A)` & `vec(B)`

Text Solution

Verified by Experts

The correct Answer is:
D

`vec(A)xx(vec(A)xxvec(B))=vec(A)(vec(A).vec(B))-vec(B)(vec(A).vec(A))rArr` this vector lies in plane of `vec(A)` & `vec(B)`
Promotional Banner

Topper's Solved these Questions

  • MISCELLANEOUS

    ALLEN |Exercise Part -II Example|61 Videos
  • MISCELLANEOUS

    ALLEN |Exercise Part -II Example Some worked out Examples|1 Videos
  • KINEMATICS (MOTION ALONG A STRAIGHT LINE AND MOTION IN A PLANE)

    ALLEN |Exercise BEGINNER S BOX-7|8 Videos
  • PHYSICAL WORLD, UNITS AND DIMENSIONS & ERRORS IN MEASUREMENT

    ALLEN |Exercise EXERCISE-IV|7 Videos

Similar Questions

Explore conceptually related problems

Vector product of three vectors is given by vec(A)xx(vec(B)xxvec(C))=vec(B)(vec(A).vec(C))-vec(C)(vec(A).vec(B)) The value of hat(i)xx(hat(j)xxhat(k)) is

Vector product of three vectors is given by vec(A)xx(vec(B)xxvec(C))=vec(B)(vec(A).vec(C))-vec(C)(vec(A).vec(B)) The value of hat(i)xx(hat(i)xxhat(j))+hat(j)xx(hat(j)xxhat(k))+hat(k)xx(hat(k)xxhat(i)) is

The value of (vec(A)+vec(B)).(vec(A)xxvec(B)) is :-

If |vec(A)xxvec(B)|=sqrt(3)vec(A).vec(B) , then the value of |vec(A)+vec(B)| is

(vec(a)xx vec(b))xx vec( c )=vec(a)xx(vec(b)xx vec( c )) . If vec(a)*vec( c ) ……………

For the vectors vec(x) and vec(y),vec(x)+vec(y)=vec(a),vec(x)xx vec(y)=vec(b) and vec(x).vec(a)=1 then vec(x) = ………….., vec(y) = ……….

Prove that [vec(a)+vec(b), vec(b)+vec( c ), vec( c )+vec(a)]=2[vec(a),vec(b),vec( c )] .

Show that, (vec(a)-vec(b))xx(vec(a)+vec(b))=2(vec(a)xx vec(b)) .

If vec(A)xxvec(B)=vec(B)xxvec(A) , then the angle between vec(A) and vec(B) is-