Home
Class 11
PHYSICS
Vector product of three vectors is given...

Vector product of three vectors is given by `vec(A)xx(vec(B)xxvec(C))=vec(B)(vec(A).vec(C))-vec(C)(vec(A).vec(B))`
The value of `hat(i)xx(hat(i)xxhat(j))+hat(j)xx(hat(j)xxhat(k))+hat(k)xx(hat(k)xxhat(i))` is

A

`hat(i)+hat(j)+hat(k)`

B

`-hat(i)-hat(j)-hat(k)`

C

`vec(0)`

D

`-3hat(i)-3hat(j)-3hat(k)`

Text Solution

Verified by Experts

The correct Answer is:
B

`Sigmahat(i)xx(hat(i)xxhat(j))=Sigmahat(i)(hat(i).hat(j))-hat(j)(hat(i).hat(i))=-Sigmahat(j)=-(hat(i)+hat(j)+hat(k))`
Promotional Banner

Topper's Solved these Questions

  • MISCELLANEOUS

    ALLEN |Exercise Part -II Example|61 Videos
  • MISCELLANEOUS

    ALLEN |Exercise Part -II Example Some worked out Examples|1 Videos
  • KINEMATICS (MOTION ALONG A STRAIGHT LINE AND MOTION IN A PLANE)

    ALLEN |Exercise BEGINNER S BOX-7|8 Videos
  • PHYSICAL WORLD, UNITS AND DIMENSIONS & ERRORS IN MEASUREMENT

    ALLEN |Exercise EXERCISE-IV|7 Videos

Similar Questions

Explore conceptually related problems

Vector product of three vectors is given by vec(A)xx(vec(B)xxvec(C))=vec(B)(vec(A).vec(C))-vec(C)(vec(A).vec(B)) The value of hat(i)xx(hat(j)xxhat(k)) is

Vector product of three vectors is given by vec(A)xx(vec(B)xxvec(C))=vec(B)(vec(A).vec(C))-vec(C)(vec(A).vec(B)) The plane of vector vec(A)xx(vec(A)xxvec(B)) lies in the plane of

For any vecotr vec(a) , The value of hati xx(vec(a)xx hati)+j xx(vec(a)xx vec(j))+hatk xx(vec(a)xx hatk) is ………….

(vec(a)xx vec(b))xx vec( c )=vec(a)xx(vec(b)xx vec( c )) . If vec(a)*vec( c ) ……………

Angle between the vectors vec(a)=-hat(i)+2hat(j)+hat(k) and vec(b)=xhat(i)+hat(j)+(x+1)hat(k)

For any vector vec(a),(vec(a)xx vec(i))^(2)+(vec(a)xx hatj)^(2)+(vec(a)xx vec(k))^(2) = ……….. .

hat(i). ( hat(k) xx hat(j)) + hat(j) .(hat(i) xx hat(k) ) + hat(k). ( hat(j) xx hat(i) ) + hat(i). (hat(i) xx hat(j) ) + hat(j) . ( hat(j) xx hat(k) ) =...........

For vectors vec(a),vec(b) and vec( c ),vec(a).vec(b)=vec(a).vec( c ) and vec(a)xx vec(b)=vec(a)xx vec( c ),vec(a) ne vec(0) then show that vec(b)=vec( c ) .

The compenent of vec(A)=hat(i)+hat(j)+5hat(j) perpendicular to vec(B)=3hat(i)+4hat(j) is

Find the angle between vec(P) = - 2hat(i) +3 hat(j) +hat(k) and vec(Q) = hat(i) +2hat(j) - 4hat(k)