Home
Class 11
PHYSICS
{:("Column- I",,"Column II",),("(Operati...

`{:("Column- I",,"Column II",),("(Operation of nonzero vectors" vec(P) "and" vec(Q)")",,"(Possivle angle between" vec(P) "and" vec(Q) ")",),((A) |vec(P)xxvec(Q)|=0,,(P)" "90^(@),),((B) |vec(P)xxvec(Q)|=sqrt(3)vec(P).vec(Q),,(Q)" "180^(@),),((C) vec(P)+vec(Q)=vec(R) and P+Q=R,,(R)" "60^(@),),((D)|vec(P)+vec(Q)|=|vec(P)-vec(Q)|,,(S)" "0^(@),),(,,(T)" "30^(@),):}`

Text Solution

Verified by Experts

The correct Answer is:
`(A) rarr Q, S; (B) rarr R; (C) rarr S; (D) rarr P`

For (A) `|vec(P)xxvec(Q)|=0 rArr` Angle between `vec(P)` & `vec(Q)` is `0^(@)` or `180^(@)`
For (B) `|PQ sin theta|=sqrt(3) PQ cos theta rArr |sin theta|=sqrt(3) cos theta`
Here `cos theta` must be positive so `theta=60^(@)`
For (C) Here `P^(2)+Q^(2)+2PQ cos theta=P^(2)+Q^(2)+2PQ rArr cos theta=1 rArr theta=0^(@)`
For (D) Here `P^(2)+Q^(2)+2PQ cos theta=P^(2)+Q^(2)-2PQ cos theta rArr cos theta=0, rArr theta=90^(@)`
Promotional Banner

Topper's Solved these Questions

  • MISCELLANEOUS

    ALLEN |Exercise Part -II Example|61 Videos
  • MISCELLANEOUS

    ALLEN |Exercise Part -II Example Some worked out Examples|1 Videos
  • KINEMATICS (MOTION ALONG A STRAIGHT LINE AND MOTION IN A PLANE)

    ALLEN |Exercise BEGINNER S BOX-7|8 Videos
  • PHYSICAL WORLD, UNITS AND DIMENSIONS & ERRORS IN MEASUREMENT

    ALLEN |Exercise EXERCISE-IV|7 Videos

Similar Questions

Explore conceptually related problems

If vec(P).vec(Q) = 0 , then what is the angle between vec(P) and vec(Q) ?

If vec(P).vec(Q)=1 , then what is the angle between vec(P) and vec(Q) ?

If |vec(A)+vec(B)|=|vec(A)-vec(B)| , then find the angle between vec(A) and vec(B)

What can be the angle between (vec(P)+vec(Q)) and (vec(P)-vec(Q)) ?

If vec(A)xxvec(B)=vec(B)xxvec(A) , then the angle between vec(A) and vec(B) is-

If |vec(A)xxvec(B)|=sqrt(3)vec(A).vec(B) , then the value of |vec(A)+vec(B)| is

For two vectors vec(a) and vec(b),|vec(a)|=4,|vec(b)|=3 and vec(a).vec(b)=6 find the angle between vec(a) and vec(b) .

If |vec(a)xx vec(b)|=vec(a).vec(b) then find the angle between vec(a) and vec(b) .

If theta is angle between two vectors vec(a) and vec(b) then vec(a).vec(b)ge 0 only when …….

For the vectors vec(x) and vec(y),vec(x)+vec(y)=vec(a),vec(x)xx vec(y)=vec(b) and vec(x).vec(a)=1 then vec(x) = ………….., vec(y) = ……….