Home
Class 11
PHYSICS
The related equations are : Q=mc(T(2)-T(...

The related equations are : `Q=mc(T_(2)-T_(1)), l_(1)=l_(0)[1+alpha(T_(2)-T_(1))]` and `PV-nRT`,
where the symbols have their usual meanings. Find the dimension of
(A) specific heat capacity (C) (B) coefficient of linear expansion `(alpha)` and (C) the gas constant (R).

Text Solution

Verified by Experts

The correct Answer is:
`[c]=[L^(2)T^(-2)K^(-1)], [alpha]=[K^(-1)], [R]=[M^(1)L^(2)T^(-2)K^(-1) mol^(-1)]`

(i)`c=Q/(m[T_2-T_1]`
Dimension of c`=[M^1L^2T^(-2))/([M^1L^0T^0][M^0L^0T^0K^1])`
`=[L^2T^(-2)K^(-1)]`
(ii)`alpha=(l_1-l_0)/(l_0(T_2-T_1))`
`implies` Dimension of `alpha=[M^0L^1T^(0))/([M^0L^1T^0][M^0L^0T^0K^1])`
(iii)`R=(PV)/(nT)=([M^1L^(-1)T^(-2)][L^3])/([mol][K])=[M^1L^2T^(-2)K^(-1)mol^(-1)]`
Promotional Banner

Topper's Solved these Questions

  • MISCELLANEOUS

    ALLEN |Exercise Exersice-4[B]|14 Videos
  • MISCELLANEOUS

    ALLEN |Exercise EXERCISE-5(A)|15 Videos
  • MISCELLANEOUS

    ALLEN |Exercise DATA SUFFICIENCY QUESTIONS|3 Videos
  • KINEMATICS (MOTION ALONG A STRAIGHT LINE AND MOTION IN A PLANE)

    ALLEN |Exercise BEGINNER S BOX-7|8 Videos
  • PHYSICAL WORLD, UNITS AND DIMENSIONS & ERRORS IN MEASUREMENT

    ALLEN |Exercise EXERCISE-IV|7 Videos

Similar Questions

Explore conceptually related problems

Write six physical quantities which have dimension of M^(1)L^(2)T^(-2)

In the formula P=(nRT)/(V-b)e^(-a/(RTV)) . Find the dimensions of a and b where P= pressure, n= number of moles. T= temperature, V= volume and R= universal gas constant.

The position of a particle at time t is given by the relation x(t)=(v_(0)/alpha)(1-e^(-alphat)) where v_(0) is a constant and alpha gt 0 . Find the dimensions of v_(0) and alpha

A thin rod having length L_(0) at 0^(@)C and coefficient of linear expansion alpha has its two ends maintained at temperature theta_(1) and theta_(2) respectively. Find its new length.

Solids and liquids both expands on heating. The density of substance decreases on expanding according to the relation rho_(2) = (rho_(1))/(1 + gamma(T_(2)- T_(1))) , where , rho_(1) rarr "density at" T_(1) , rho_(2) rarr "density at" T_(2) , gamma rarr coefficient of volume expansion of substances. When a solid is submerged in a liquid , liquid exerts an upward force on solid which is equal to the weight of liquid displaced by submerged part of solid. Solid will float or sink depends on relative densities of solid and liquid . A cubical block of solid floats in a liquid with half of its volume submerged in liquid as shown in figure (at temperature T ) alpha_(S) rarr Coefficient of linear expansion of solid gamma_(L) rarr "Coefficient of volume expansion of liquid" rho_(S) rarr "Density of solid at temperature" T rho_(L) rarr" Density of liquid at temperature" T Imagine fraction submerged does not change on increasing temperature the relation between gamma_(L) and alpha_(S) is

Solids and liquids both expands on heating. The density of substance decreases on expanding according to the relation rho_(2) = (rho_(1))/(1 + gamma(T_(2)- T_(1))) , where , rho_(1) rarr "density at" T_(1) , rho_(2) rarr "density at" T_(2) , gamma rarr coefficient of volume expansion of substances. When a solid is submerged in a liquid , liquid exerts an upward force on solid which is equal to the weight of liquid displaced by submerged part of solid. Solid will float or sink depends on relative densities of solid and liquid . A cubical block of solid floats in a liquid with half ot its volume submerged in liquid as shown in figure (at temperature T ) alpha_(S) rarr Coefficient of linear expansion of solid gamma_(L) rarr "Coefficient of volume expansion of liquid" rho_(S) rarr "Density of solid at temperature" T rho_(L) rarr" Density of liquid at temperature" T The relation between densities of solid and liquid at temperature T is

Solids and liquids both expands on heating. The density of substance decreases on expanding according to the relation rho_(2) = (rho_(1))/(1 + gamma(T_(2)- T_(1))) , where , rho_(1) rarr "density at" T_(1) , rho_(2) rarr "density at" T_(2) , gamma rarr coefficient of volume expansion of substances. When a solid is submerged in a liquid , liquid exerts an upward force on solid which is equal to the weight of liquid displaced by submerged part of solid. Solid will float or sink depends on relative densities of solid and liquid . A cubical block of solid floats in a liquid with half ot its volume submerged in liquid as shown in figure (at temperature T ) alpha_(S) rarr Coefficient of linear expansion of solid gamma_(L) rarr "Coefficient of volume expansion of liquid" rho_(S) rarr "Density of solid at temperature" T rho_(L) rarr" Density of liquid at temperature" T Assume block does not expand on heating . The temperature at which the block just begins to sink in liquid is

Find the equation of the straight lines passing through the following pair of point: (a t_1, a//t_1) and (a t_2, a//t_2)

Solids and liquids both expands on heating. The density of substance decreases on expanding according to the relation rho_(2) = (rho_(1))/(1 + gamma(T_(2)- T_(1))) , where , rho_(1) rarr "density at" T_(1) , rho_(2) rarr "density at" T_(2) , gamma rarr coefficient of volume expansion of substances. When a solid is submerged in a liquid , liquid exerts an upward force on solid which is equal to the weight of liquid displaced by submerged part of solid. Solid will float or sink depends on relative densities of solid and liquid . A cubical block of solid floats in a liquid with half ot its volume submerged in liquid as shown in figure (at temperature T ) alpha_(S) rarr Coefficient of linear expansion of solid gamma_(L) rarr "Coefficient of volume expansion of liquid" rho_(S) rarr "Density of solid at temperature" T rho_(L) rarr" Density of liquid at temperature" T Imagine the depth of the block submerged in the liquid ,does not change on increasing temperature then

Solids and liquids both expands on heating. The density of substance decreases on expanding according to the relation rho_(2) = (rho_(1))/(1 + gamma(T_(2)- T_(1))) , where , rho_(1) rarr "density at" T_(1) , rho_(2) rarr "density at" T_(2) , gamma rarr coefficient of volume expansion of substances. When a solid is submerged in a liquid , liquid exerts an upward force on solid which is equal to the weight of liquid displaced by submerged part of solid. Solid will float or sink depends on relative densities of solid and liquid . A cubical block of solid floats in a liquid with half ot its volume submerged in liquid as shown in figure (at temperature T ) alpha_(S) rarr Coefficient of linear expansion of solid gamma_(L) rarr "Coefficient of volume expansion of liquid" rho_(S) rarr "Density of solid at temperature" T rho_(L) rarr" Density of liquid at temperature" T If temperature of system increases, then fraction of solid submerged in liquid

ALLEN -MISCELLANEOUS-Exercise-04 [A]
  1. The position vector of car w.r.t. its starting point is given as vecr=...

    Text Solution

    |

  2. Answer the following : (i) A vector has magnitude & direction. Does ...

    Text Solution

    |

  3. A room has dimensions 3 m xx 4 m xx5 m. A fly starting at one cronet e...

    Text Solution

    |

  4. Vector vec(a) has components a(x)=3, a(y)=4. Find the components of a ...

    Text Solution

    |

  5. Find: (i) "north cross west" " " (ii) "down dot south" (iii) "we...

    Text Solution

    |

  6. The position vector of a particle of mass m= 6kg is given as vec(r)=[(...

    Text Solution

    |

  7. A plane body has perpendicular axes OX and OY marked on it and is acte...

    Text Solution

    |

  8. State with reasons, whether the following algebraic operations with sc...

    Text Solution

    |

  9. A car travels due east on a level road for 30 km. It then turns due no...

    Text Solution

    |

  10. Write the vector representation of the vectors A and B with respect to...

    Text Solution

    |

  11. Find the kinetic energy of a particle of mass 200 g moving with veloci...

    Text Solution

    |

  12. Acceleration of particle moving in straight line can be written as a=(...

    Text Solution

    |

  13. The position vector of an object moving in X-Z plane is vec(r)=v(0)tha...

    Text Solution

    |

  14. The position of a particle at time t is given by the relation x(t)=((V...

    Text Solution

    |

  15. The related equations are : Q=mc(T(2)-T(1)), l(1)=l(0)[1+alpha(T(2)-T(...

    Text Solution

    |

  16. A particle of mass m is in a uni-directional potential field where the...

    Text Solution

    |

  17. Assume that the largest stone of mass 'm' that can be moved by a flowi...

    Text Solution

    |

  18. A projectile fired at an angle of 45^(@) travels a total distance R, c...

    Text Solution

    |

  19. In the formula P=(nRT)/(V-b)e^(-a/(RTV)). Find the dimensions of a and...

    Text Solution

    |

  20. If instead of mass, length and time as fundamental quantities we choos...

    Text Solution

    |