Home
Class 12
MATHS
Let be a real valued function defined by...

Let be a real valued function defined by` f(x) =(e^x-e^(|x|))/(e^x+e^|x|), ` then the range of `f(x)` is :
(A) R
(B) [0, 1]
(C) (0, 1)
(D) [0,0.5)

Text Solution

AI Generated Solution

To find the range of the function \( f(x) = \frac{e^x - e^{|x|}}{e^x + e^{|x|}} \), we will analyze it for two cases based on the definition of the absolute value function. ### Step 1: Analyze for \( x \geq 0 \) When \( x \geq 0 \), we have \( |x| = x \). Therefore, the function simplifies to: \[ f(x) = \frac{e^x - e^x}{e^x + e^x} = \frac{0}{2e^x} = 0 ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f be a real valued function defined by f(x)=(e^(x)-e^(-|x|))/(e^(x)+e^(|x|)), then the range of f(x) is: (a)R(b)[0,1](c)[0,1)(d)[0,(1)/(2))

Let f:R rarr R be a function defined by,f(x)=(e^(|x|)-e^(-x))/(e^(x)+e^(-x)) then

The function f:R rarr R defined by f(x)=(e^(|x|)-e^(-x))/(e^(x)+e^(-x)) is

let f:R rarr R be a continuous function defined by f(x)=(1)/(e^(x)+2e^(-x))

Let f:R rarr R" be defined by "f(x)=(e^(|x|)-e^(-x))/(e^(x)+e^(-x)). Then

A function is defined as f(x) = {{:(e^(x)",",x le 0),(|x-1|",",x gt 0):} , then f(x) is