Home
Class 12
PHYSICS
A point particle if mass 0.1 kg is execu...

A point particle if mass `0.1 kg` is executing SHM of amplitude `0.1 m`. When the particle passes through the mean position, its kinetic energy is `8 xx 10^(-3)J`. Write down the equation of motion of this particle when the initial phase of oscillation is `45^(@)`.

Text Solution

Verified by Experts

The correct Answer is:
A, D

`1/2 mv_(max)^(2) = 8 xx 10^(-3)`
`rArr 1/8 momega^(2)a^(2) = 8 xx 10^(-3)`
`rArr omega = 4rad//s`
Therefore equation of SHM
`x = 0.1 sin (4t + (pi)/(4))`
Promotional Banner

Topper's Solved these Questions

  • SIMPLE HARMONIC MOTION

    ALLEN |Exercise Exercise-04 [B]|104 Videos
  • SIMPLE HARMONIC MOTION

    ALLEN |Exercise Exercise-05 [A]|39 Videos
  • SIMPLE HARMONIC MOTION

    ALLEN |Exercise Comprehension Base Questions (5)|3 Videos
  • RACE

    ALLEN |Exercise Basic Maths (Wave Motion & Dopplers Effect) (Stationary waves & doppler effect, beats)|25 Videos
  • TEST PAPER

    ALLEN |Exercise PHYSICS|4 Videos

Similar Questions

Explore conceptually related problems

A body of mass m is executing SHM with amplitude a. When its displacement x=1 unit, the force is b then what will be its maximum kinetic energy?

A particle executes SHM on a line 8 cm long. Its K.E. and P.E. will be equal when its distance from the mean position is :-

The time period of a particle executing SHM is T . After a time T//6 after it passes its mean position, then at t = 0 its :

A particle executes simple harmonic with an amplitude of 5 cm. When the particle is at 4 cm from the mean position the magnitude of its velocity in SI units is equal to that of its acceleration. Then, its periodic time in seconds is

A particle executes linear simple harmonic motion with an amplitude of 3 cm. When the particle is at 2 cm from the mean position, the magnitude of its velocity is equal to that of its acceleration. Then its time period in second is…….

A particle is executing SHM given by x = A sin (pit + phi) . The initial displacement of particle is 1 cm and its initial velocity is pi cm//sec . Find the amplitude of motion and initial phase of the particle.

A particle simple harmonic motion completes 1200 oscillations per minute and passes through the mean position with a velocity 3.14 ms^(-1) . Determine displacement of the particle from its mean position. Also obtain the displacement equation of the particle if its displacement be zero at the instant t = 0 .

A particle executes simple harmonic motion with a period of 16s . At time t=2s , the particle crosses the mean position while at t=4s , its velocity is 4ms^-1 amplitude of motion in metre is

A horizontal spring is connedted to a mass M . It exectues simple harmonic motion. When the mass M passes through its mean position, an object of mass m is put on it and they moves together. The ratio of frequencies before and after will be-

A particle is executing SHM with time period T Starting from mean position, time taken by it to complete (5)/(8) oscillations is,

ALLEN -SIMPLE HARMONIC MOTION-Exercise-04 [A]
  1. A particle simple harmonic motion completes 1200 oscillations per minu...

    Text Solution

    |

  2. Find the resulting amplitude A' and the phase of the vibrations delta ...

    Text Solution

    |

  3. A particle is executing SHM given by x = A sin (pit + phi). The initia...

    Text Solution

    |

  4. The shortest distance travelled by a particle executing SHM from mean ...

    Text Solution

    |

  5. Two particle A and B execute SHM along the same line with the same amp...

    Text Solution

    |

  6. A body executing S.H.M. has its velocity 10cm//s and 7 cm//s when its ...

    Text Solution

    |

  7. A particle executing a linear SHM has velocities of 8 m/s, 7 m/s and 4...

    Text Solution

    |

  8. A particle is oscillating in a stright line about a centre of force O,...

    Text Solution

    |

  9. The displacement of a particle varies with time as x = 12 sin omega t ...

    Text Solution

    |

  10. A point particle if mass 0.1 kg is executing SHM of amplitude 0.1 m. W...

    Text Solution

    |

  11. A body of mass 1 kg suspended an ideal spring oscillates up and down. ...

    Text Solution

    |

  12. The potential energy (U) of a body of unit mass moving in a one-di...

    Text Solution

    |

  13. A body of mass 1.0 kg is suspended from a weightless spring having for...

    Text Solution

    |

  14. In the figure shown, the block A of mass m collides with the identical...

    Text Solution

    |

  15. A block of mass 1kg hangs without vibrations at the end of a spring wi...

    Text Solution

    |

  16. A small ring of mass m(1) is connected by a string of length l to a sm...

    Text Solution

    |

  17. Calculate the time period of a uniform square plate of side 'a' if it ...

    Text Solution

    |

  18. Two identical rods each of mass m and length L, are tigidly joined and...

    Text Solution

    |

  19. A half ring of mass m, radius R is hanged at its one end its one end i...

    Text Solution

    |

  20. The two torsion pendula differ only by the addition of cylindrical mas...

    Text Solution

    |