Home
Class 12
MATHS
l n ((3)/(sqrt(3)))- ln (2+sqrt(3)) equa...

`l n ((3)/(sqrt(3)))- ln (2+sqrt(3))` equals (where `l nx = log_(e)x)`

A

`l n sqrt(3) +ln(2-sqrt(3))`

B

`ln 3- ln (2-sqrt(3))`

C

`ln 3 - ln (2-sqrt(3))`

D

`ln sqrt(3)+ln (2+sqrt(3))`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

sqrt(3)x^(2) - sqrt(2)x + 3sqrt(3)=0

Comprehension 1 Let a^((log)_b x)=c\ w h e r e\ a ,\ b ,\ c\ &\ x\ are parameters. On the basis of above information, answer the following questions: If b=(log)_(sqrt(3))3, c=2(log)_bsqrt(b) and sintheta=a (where, x >1 ) then theta can be a. pi/4 b. (3pi)/2 c. pi/2 d. 0

If log_(sqrt(2)) sqrt(x) +log_(2)x + log_(4) (x^(2)) + log_(8)(x^(3)) + log_(16)(x^(4)) = 40 then x is equal to-

4^(5 log_(4sqrt(2)) (3-sqrt(6)) - 6 log_8(sqrt(3)-sqrt(2)))

Differentiate w.r.t x, the following function: (i) sqrt(3x+2) + (1)/(sqrt(2x^(2) + 4)) (ii) e^(sec^(2)x)+ 3 cos^(-1)x (iii) log_(7) (log x)

Find the number of solution of theta in [0,2pi] satisfying the equation ((log)_(sqrt(3))tantheta(sqrt((log)_(tantheta)3+(log)_(sqrt(3))3sqrt(3))=-1

The value of 6+(log)_(3/2)[1/(3sqrt(2)) * sqrt{ (4 - 1/(3sqrt(2))) sqrt(4 - 1/(3sqrt(2))....... } is ...............

1/((log)_(sqrt(b c))a b c)+1/((log)_(sqrt(c a))a b c)+1/((log)_(sqrt(a b))a b c) has the value of equal to: a. 1/2 b. 1 c. 2 d. 4

Lat x=2^((log_(2)3) (log_(3) 4)....) , where the last term in exponent is log_(99) 100 , then the value of cos ((xpi)/4)+sin ((x pi)/4) is equal to -