Home
Class 12
MATHS
If log(y)x +log(x)y = 7, then the value ...

If `log_(y)x +log_(x)y = 7`, then the value of `(log_(y)x)^(2) +(log_(x)y)^(2)`, is

A

43

B

45

C

47

D

49

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

If log_(4)5 = x and log_(5)6 = y then

Suppose 3 sin ^(-1) ( log _(2) x ) + cos^(-1) ( log _(2) y) =pi //2 " and " sin^(-1) ( log _(2) x ) + 2 cos^(-1) ( log_(2) y) = 11 pi//6 , then the value of x^(-2) + y^(-2) equals

If log_2 log_3 log_4 (x+1) =0, then x is :-

Solve (log)_x2(log)_(2x)2=(log)_(4x)2.

If log_(9)x +log_(4)y = (7)/(2) and log_(9) x - log_(8)y =- (3)/(2) , then x +y equals

If log_(10)(sin(x+pi/4))=(log_(10)6-1)/2 , the value of log_(10)(sinx)+log_(10)(cosx) is

If log ((x+y)/3)=1/2 (log x +log y) then find the value of x/y+y/x

If y is a function of x and log (x+y)=2xy , then the value of y'(0) is

Using log_(a)x^(n) = n log_(a)x, expand the following log_(2)7^(25) Note : logx = log_(10)x

If y= log_(e) ( log_(pi) x) , ( x gt 1) then ( d^2 y)/( dx^2) = …....