Home
Class 12
MATHS
If log(2)(log(4)(x))) = 0, log(3)(log(4)...

If `log_(2)(log_(4)(x))) = 0, log_(3)(log_(4)(log_(2)(y))) = 0` and `log_(4)(log_(2)(log_(3)(z))) = 0` then the sum of `x,y` and `z` is-

A

89

B

58

C

105

D

50

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

If log_(sqrt(2)) sqrt(x) +log_(2)x + log_(4) (x^(2)) + log_(8)(x^(3)) + log_(16)(x^(4)) = 40 then x is equal to-

If log_(9)x +log_(4)y = (7)/(2) and log_(9) x - log_(8)y =- (3)/(2) , then x +y equals

Solve the equation 2log_(3)x+log_(3)(x^(2)-3)=log_(3)0.5+5^(log_(5)(log_(3)8)

log_(3/4)log_8(x^2+7)+log_(1/2)log_(1/4)(x^2+7)^(-1)=-2

If log_(4)5 = x and log_(5)6 = y then

If b gt 1, x gt 0 and (2x)^(log_(b) 2)-(3x)^(log_(b) 3)=0 , then x is

Series (1)/(log_(2)^(2)) + (1)/(log_(4)^(4)) + (1)/(log_(8)^(4)) + …..+ (1)/(log_(2^(n))4) =……….

let y=sqrt(log_2(3)log_2(12)log_2(48)log_2(192)+16)-log_2(12)log_2(48)+10 find y in N

If log_(x)log_(18) (sqrt(2)+sqrt(8)) = (-1)/(2) . Then the value of x .

If log_2 log_3 log_4 (x+1) =0, then x is :-