Home
Class 12
MATHS
If tan^(4)theta +tan^(2) theta = 1, then...

If `tan^(4)theta +tan^(2) theta = 1`, then the value of `cos^(4)theta +cos^(2)theta` is-

A

`(3)/(4)`

B

`(3)/(2)`

C

`(1)/(2)`

D

1

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

If tan^(2)theta=2tan^(2)phi+1 then the value of cos(2theta)+sin^(2)phi is ………..

If sintheta + sin^(2)theta = 1 , prove that cos^(2)theta + cos^(4)theta = 1

If theta is an acute angle and tan theta + cot theta = 2 , find the value of tan^(12)theta + cot^(12)theta .

If sec theta +tan theta =p, then what is the value of sec theta -tan theta ?

If sin theta_1 + sintheta_2 + sin theta_3=3, then find the value of cos theta_1 + cos theta_2 + cos theta_3.

If cot theta=(4)/(3) , then find the value of sin theta,cos theta and cos ectheta in first quadrant. If sin theta+cos ec theta=2 then find the value of sin^(8 )theta+cos ec^(8)theta .

Show that tan ^(2) theta +tan ^(4) theta =sec ^(4) theta -sec ^(2) theta

If tantheta - tan^(2) theta = 1 , then tan^(4) theta-2tan^3theta-tan^2theta+2tantheta+1 has value 4.

If 3 sin theta + 4 cos theta=5 , then find the value of 4 sin theta-3 cos theta .