Home
Class 12
MATHS
If the roots of x^(2)+ax +b = 0 are sec^...

If the roots of `x^(2)+ax +b = 0` are `sec^(2)((pi)/(8))` and `coses^(2)(pi)/(8)`, then the numerical value of `(a+b)`.

Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

If the roots of x^(2)-bx + c=0 are "sin" pi/7 and "cos" pi/7 then b^(2) equals

Find the value of tan""(pi)/(8) .

If (a^(2)+b^(2))^(3) = (a^(3)+b^(3))^(2) and ab ne 0 then the numerical value of (a)/(b)+ (b)/(a) is equal to-

If (sin^(-1) a)^(2) +( cos^(-1) b)^(2) + ( sec^(-1)c)^(2) + ( cosec^(-1) d)^(2) = ( 5pi^(2))/2 " , then the value of " ( sin^(-1)a)^(2) - ( cos^(-1)b) ^(2) + ( sec^(-1)c)^(2) - ( cosec^(-1)d)^(2)

If the difference between the corresponding roots of the equations x^(2)+ax+b=0 and x^(2)+bx+a=0(a!=b) si the same, find the value of a+b .

if tan ^(2)""(pi-A)/(4)+tan^(2)""(pi-B)/(4) + tan^(2)""(pi-C)/(4) =1, then DeltaABC is

Prove that : 2sin^(2)((3pi)/(4))+2cos^(2)((pi)/(4))+2sec^(2)((pi)/(3))=10

If sin^(-1)(x/5)+cose c^(-1)(5/4)=pi/2 then the value of x is: (1) 1 (2) 3 (3) 4 (4) 5

Let a,b,c,d be distinct real numbers and a and b are the roots of the quadratic equation x^2-2cx-5d=0 . If c and d are the roots of the quadratic equation x^2-2ax-5b=0 then find the numerical value of a+b+c+d

sec^(-1)("cosec"pi/8) = _____