Home
Class 12
MATHS
If sin2A= lambda sin 2B prove that (tan...

If ` sin2A= lambda sin 2B` prove that `(tan(A+B)/tan(A-B))=(lambda+1)/(lambda-1)`

Text Solution

Verified by Experts

Given `sin2A=lambdasin 2B`
`rArr(Sin2A)/(sin2B)=(lambda)/(1)`
Applying componendo `&` dividendo,
`(sin2A+sin2B)/(sin2B-sin2A)=(lambda+1)/(1-lambda)`
`rArr(2sin((2A+2B)/(2))cos((2A-2B)/(2)))/(2cos((2B+2A)/(2))sin((2B-2A)/(2)))=(lambda+1)/(1-lambda)`
`rArr(sin(A+B)cos(A-B))/(cos(A+B)sin[-(A-B)])=(lambda+1)/(1-lambda)rArr(sin(A+B)cos(A-B))/(cos(A+B)x-sin(A-B))=(lambda+1)/(-(lambda-1))`
` rArr (sin(A+B)cos(A-B))/(cos(A+B)sin(A-B))=(lambda+1)/(lambda-1)rArr tan(A+B )cot(A-B)=(lambda+1)/(lambda-1)`
` rArr(tan(A+B))/(an(A-B))=(lambda+1)/(lambda-1)`
Promotional Banner

Topper's Solved these Questions

  • COMPOUND ANGLES

    ALLEN |Exercise Yourself|2 Videos
  • COMPOUND ANGLES

    ALLEN |Exercise EX-01|15 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    ALLEN |Exercise All Questions|1 Videos
  • DETERMINANTS

    ALLEN |Exercise All Questions|100 Videos

Similar Questions

Explore conceptually related problems

A straight line L cuts the lines A B ,A Ca n dA D of a parallelogram A B C D at points B_1, C_1a n dD_1, respectively. If ( vec A B_1)=lambda_1 vec A B ,( vec A D_1)=lambda_2 vec A Da n d( vec A C_1)=lambda_3 vec A C , then prove that 1/(lambda_3)=1/(lambda_1)+1/(lambda_2) .

Prove that, tan((A)/(2)+B)=(c+b)/(c-b)tan((A)/(2))

If 3tan A tan B=1, prove that 2cos(A+B)=cos(A-B)dot

Prove that : tan^(-1)(1/4)+tan^(-1)(2/9)=sin^(-1)(1/sqrt5) .

Prove that (1-tan^2(pi/4-A))/(1+tan^2(pi/4-A))=sin2Adot

Prove that : 2"sin"^(-1)3/5="tan"^(-1)24/7

For any triangle ABC, prove that : (sin(B-C))/(sin(B+C))=(b^(2)-c^(2))/(a^(2))

By using above basic addition/ subtraction formulae, prove that (i) tan (A+B)=(tan A+tan B)/(1-tan A tan B) , (ii) tan (A-B)=(tan A-tanB)/(1+tan A tan B) (iii) sin2theta=2sintheta costheta , (iv) cos2theta=cos^(2)theta=1-2sin^(2)theta=2cos^(2)theta-1 (v) tan 2theta=(2 tan theta)/(1-tan^(2) theta)

Prove that sec A (1 - sin A)(sec A+ tan A) = 1.

If the matrix A = [[lambda_(1)^(2), lambda_(1)lambda_(2), lambda_(1) lambda_(3)],[lambda_(2)lambda_(1),lambda_(2)^(2),lambda_(2)lambda_(3)],[lambda_(3)lambda_(1),lambda_(3)lambda_(2),lambda_(3)^(2)]] is idempotent, the value of lambda_(1)^(2) + lambda_(2)^(2) + lambda _(3)^(2) is