Home
Class 12
MATHS
In a triangle ABC, sin A- cos B = Cos C...

In a triangle `ABC, sin A- cos B = Cos C`, then angle `B` is

A

`pi//2`

B

`pi//3`

C

`pi//4`

D

`pi//6`

Text Solution

Verified by Experts

The correct Answer is:
A

We have, `sin A-cosB=cosC`
`sinA=cosB+cosC`
`rArr 2 sin(A)/(2)cos(A)/(2)=2cos((B+C)/(2))cos((B-C)/(2))`
`rArr 2sin(A)/(2)cos(A)/(2)=2cos((pi-A)/(2))cos((B-C)/(2))because A+B+C=pi`
`rArr2sin(A)/(2)cos(A)/(2)=2sin(A)/(2)cos((B-C)/(2))`
`rArrcos(A)/(2)=cos(B-C)/(2)` or `A=B-C: "but" A+B+C=pi`
therefore `2B=pirArrB=pi//2`
Promotional Banner

Topper's Solved these Questions

  • COMPOUND ANGLES

    ALLEN |Exercise Yourself|2 Videos
  • COMPOUND ANGLES

    ALLEN |Exercise EX-01|15 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    ALLEN |Exercise All Questions|1 Videos
  • DETERMINANTS

    ALLEN |Exercise All Questions|100 Videos

Similar Questions

Explore conceptually related problems

In a triangle ABC, cos 3A + cos 3B + cos 3C = 1 , then then one angle must be exactly equal to

ABC is an isosceles triangle with AB = AC. Draw AP bot BC to show that angle B = angle C

If sin A =cos B , then prove that A+B =90 ^(@)

Given that sin (A+ B) = sin A cos B + cos A sin B , find the value of sin 75° .

Find the circumcentre of triangle ABC if A (7, 4), B (3, -2) and angle C = (pi)/(3) .

Draw a triangle ABC with side BC = 7 cm, angle B =45 ^(@), angle A = 105 ^(@). Then, construct a triangle whose sides are 4/3 times the corresponding sides of Delta ABC.

In Delta ABC and Delta XYZ , "if " angle A and angle X are acute angles such that cos A =cos X then show that angle A = angle X

If a,b,and c are the side of a triangle and A,B and C are the angles opposite to a,b,and c respectively, then Delta=|{:(a^(2),bsinA,CsinA),(bsinA,1,cosA),(CsinA,cos A,1):}| is independent of

If angleA and angleB are acute angles such that cos A = cos B, then show that angleA = angleB

In a right angle triangle ABC, right angle is at B ,If tan A=sqrt(3) , then find the value of (i) sin A cos C+ cos A sin C " "(ii) cos A cos C -sin A sin C